Assessment of Trees Outside Forests(ToF)

 Report

By:
TELANGANA STATE FOREST
DEPARTMENT

PREFACE

Telangana has $26903 \mathrm{~km}^{2}$ recorded forests which is 24% of the geographical area of the State. The forests are mostly Deciduous and Thorny. The detailed information on vegetation cover, growing stock \& population structure, number of trees, regeneration status, etc. is essential for forest managers, planners and policy makers. The National Forest Policy envisages that 33\% of the geographical area should be brought under the green cover. To formulate the strategy to achieve this objective, it necessary to have accurate assessment of the tree cover inside as well as outside the notified forests.

State Forest Department has been making of green cover inside the notified forests since 1998 and bringing out annual State specific "State of Forests Reports" since 2010. As per the assessment made by TSFD using LISS III data of 2015, the forest cover inside the notified forests is estimated as $16500.56 \mathrm{~km}^{2}$, which is 14.72% of the Geographical area. As per the Forest Inventory Report published in 2010, the GS inside the notified forests in Telangana is estimated to be $118.73 \mathrm{Mm}^{3}$ and the average $G S$ as $41.15 \mathrm{~m}^{3} /$ ha. However, the information on the Tree cover outside the notified forests is not readily available. Hence, for the first time attemps has been made to assess the Tree/ Green cover outside the notified forests.

Trees Outside (notified) Forests (TOF) offer a wide range of ecological, economic and social services like that of notified forests. With the general ban on green felling in natural forests in India, the rural communities and Wood Based Industries have become increasingly dependent on TOF for timber and non-timber requirement for livelihood and commercial purposes. In this backdrop, the Hon'ble Supreme Court of India has directed the State Government to assess the potential of the Forests both notified as well as TOF vis-à-vis the
requirement of Wood Based Industries as the same of the State qua saw mills and timber based industry which is linked to grant of permissions to the Wood-Based Industries.

Keeping the above in view, the Forest Survey of India (FSI) commenced estimation of TOF on a small scale in India in the year 1995 and for the entire country in 2003. However, results based on this assessment do not reflect the true picture at the district level because of low level of sampling.

Therefore, the State Forest Department decided to assess the TOF in the State using the Cartosat data of 2.5 m resolution for stratification. The methodology formulated by the FSI has been followed while improving the stratification and increasing the sampling size. A customized web-enabled package was developed and deployed for capturing the information and analysis.

The thrust of this report is on providing of State and District level information on TOF resources. The results of this report will serve as a starting point for moving from a forest-centric to holistic view on monitoring the tree cover upto the smallest administrative level. It will provide necessary inputs for better planning for afforestation as well as proper management of natural resources.

Hope this report will be useful to all the Government Departments NGOs, Corporates, People's Representatives and the people at the large involved in massive planting programme under Telanganaku Karith Haram (TKHH).

Date:
Hyderabad
(P.K. Sharma, IFS)

Prl. Chief Conservator of Forests (HoFF)

Acknowledgements

At the outset I would like to express my sincere appreciation for the efforts which led to the commencement of this unique exercise on assessment of Trees Outside notified forests using modern technologies, which is a herculean task. This is possible only with the great cooperation and support from all the Officers and Staff of State Forest Department. I gratefully acknowledge the guidance and encouragement given by Sri P.K. Sharma, IFS, PCCF (HoFF) in bringing out the Trees Outside notified Forests Report. He is the driving force in formulating the methodology for assessment of the ToF, carrying out the inventory, development of customized application and analysis of data. He himself gone through the manuscript and made suggestions. I express profound gratitude and deep regards to Sri C. Siva Sankara Reddy, retired $\operatorname{PCCF}(H o F F)$ who has initiated the exercise in Adilabad District. I also express my sincere regards to Sri Madhukar Raj, IFS, Sri Hitesh Malhotra, IFS, Sri S.V.Kumar, IFS, Sri B.S.S. Reddy, IFS, retired PCCF(HoFF)s and Sri S.B.L. Misra, IFS, PCCF(HoFF), AP for their constant encouragement during the exercise. I sincerely acknowledge Dr.H.C.Misra, IFS, retired APCCF(IT) for his contribution starting from the Satellite data interpretation, sampling design, analysis of data etc. I also acknowledge the contribution of Sri M.Prudhviraj, IFS, APCCF(WL), for his guidance, monitoring and encouragement in all activities.

I sincerely acknowledge Sri P. Sreenivasa Rao, DCF(IT), Sri S. Madhava Rao, ACF(Central), Dr. A. Rama Murthy, DFO(SF), Mahabub Nagar for their contribution in all activities starting from procurement of Satellite data \& its interpretation, formulating the sampling design, development of customized package for data entry \& analysis, obtaining the inventory data \& its validation etc and also in guiding Project Scientists in image processing and analysis, correcting, obtaining feedback etc. I sincerely acknowledge Sri P. Sreenivasa Rao, DCF(IT) for the analysis of the results, compiling the results, analysis; in preparing the manuscript, making corrections, and helping in finalizing the report.

Project Scientists namely Sri M. Rajeshwar Reddy, Sri B. Ramakrishna, Sri K. Bhaskar, Sri K. Rajashekar Reddy, Smt A.I. Sheeba, Smt D. Kavitha, Miss K. Sravani, Smt. Mounika, Sri Krishna Prasad, Sri Vamshi, Smt. Deepthi who worked hard in Image Processing \& Analysis, correction, and compilation of the report. Their sincere contribution is highly appreciated and acknowledged. Contribution of Project Scientists namely Sri Srikanth and Sri Prasad in
development of customized module in FMIS is sincerely acknowledged. This facilitated speeding up of work.

Contributions from all the field officers of the Department from Circle Heads to ABOs are highly acknowledged for Ground Checking of the change areas and furnishing of feedback without which achieving high level accuracy was impossible.

Last but not the least we would like to acknowledge all the officers \& our colleagues and other staff in head office for their valuable contributions and suggestions in bringing out this report.

Sunil Kumar Gupta, IFS, APCCF(IT\&WP)

Abstract

EXECUTIVE SUMMARY "The Report on Trees Outside Forests" gives comprehensive information on the tree cover and growing stock etc., outside the notified forests. It is for the first time in country where the Cartosat data of 2.5 m resolution is used in stratification of the tree wealth outside the notified forests. The methodology formulated by the Forest Survey of India in assessment of Trees Outside (notified) Forests (ToF) is followed for ease of comparison, while improving the stratification and increasing the sampling size. The assessment provides necessary inputs for sustainable management of the notified forests by way of reduction of pressure on natural forests. The maps showing the geolocations where the detailed inventory was to be carried out, were overlaid on topomaps and supplied to field officers for ground verification and the inventory carried out. A customized web-enabled package was developed and deployed for capturing the information and assessment. The following are the key results of this assessment:

A. EXTENT OF TREE COVER:

a. The geographical area of the State is $\mathbf{1 1 2 1 0 2} \mathrm{km}^{2}$, out of which $\mathbf{2 6 9 0 3 . 7 0} \mathrm{km}^{2}$ is notified forests.
b. The total extent under various classes of ToF in the State is $6957.22 \mathrm{~km}^{2}$, which comes to $\mathbf{6 . 2 1 \%}$ of the geographical area.
c. The extent of Natural Forests outside the notified forests is $2325.23 \mathrm{~km}^{2}$; and that of Block Plantations $\mathbf{1 7 8 4 . 2 4} \mathrm{km}^{2}$ \& Linear Plantations $198.68 \mathrm{~km}^{2}$; Rural Habitations $67.54 \mathrm{~km}^{2}$, Urban Habitations 39.62 km ${ }^{2}$ and Scattered trees 2542.21 km ${ }^{2}$.
d. The natural forests, plantations and habitations constitute $\mathbf{3 3 . 4 2 \%} \mathbf{2 8 . 5 0 \%}$ and $\mathbf{3 8 . 0 8 \%}$ of the total extent under ToF respectively.

B. GROWING STOCK:

a. Overall Growing stock in the TOF is estimated as $\mathbf{2 1 . 4 4 4}$ Million cubic meters $\left(\mathrm{Mm}^{3}\right)$. Of which the GS of Natural Forests is $\mathbf{8 . 7 7 0} \mathrm{Mm}^{3}$; Plantations $\mathbf{1 1 . 5 3 1} \mathrm{Mm}^{3}$; Rural Habitations $0.085 \mathrm{Mm}^{3}$; Urban Habitations $0.045 \mathrm{Mm}^{3}$ and Scattered Trees $1.013 \mathrm{Mm}^{3}$
b. The total number of stems is estimated to be $\mathbf{4 4 . 1 5 4}$ Million (M). Of which Natural Forests account for 20.451 M; Plantations 22.258 M; Rural Habitations 0.093 M; Urban Habitations $\mathbf{0 . 0 6 6 ~ M ~ a n d ~ S c a t t e r e d ~ T r e e s ~} \mathbf{1 . 2 8 6}$ M.
c. The top 10 species based on volume are Mangifera Indica with $8.3956 \mathrm{Mm}^{3}$ (53.12\%); Azadirachta indica $2.5712 \mathrm{Mm}^{3}$ (16.27\%) ; Butea monosperma 1.4733 Mm^{3} (9.32\%); Tectona grandis $1.1161 \mathrm{Mm}^{3}$ (7.06\%); Bombax religiosum $0.5048 \mathrm{Mm}^{3}$ (3.19\%); Tamarindus indica $0.4099 \mathrm{Mm}^{3}$ (2.59\%); Madhuca indica $\mathbf{0 . 3 5 8 4} \mathrm{Mm}^{3}$ (2.27\%); Acacia nilotica $\mathbf{0 . 3 5 7 0} \mathrm{Mm}^{3}$ (2.26\%); Phoenix sylvestris $0.3265 \mathrm{Mm}^{3}$ (2.07\%); and Eucalyptus camaldulensis $0.2926 \mathrm{Mm}^{3}$ (1.85\%)
d. The top 10 species based on number of stems are Mangifera indica 16.2573 M (51.66\%); Tectona grandis 4.0657 M (12.92\%); Azadirachta indica 3.8156 M (12.12\%); Butea monosperma 1.8610 M (5.91\%); Acacia nilotica 1.5770 M (5.01\%); Bombax religiosum 1.0724 M $\begin{array}{llllll}\text { (3.41\%); Citrus Pseudolimon } & \mathbf{0 . 8 0 5 1} & \mathrm{M} & (2.56 \%) ; \\ \text { Eucalyptus camaldulensis } & \mathbf{0 . 7 0 7 0} & \mathrm{M} & \text { (2.25\%); }\end{array}$

Lagerstroemia parviflora 0.6675 M (2.12\%); and Albizia amara 0.6403 M (2.03\%).
e. The top species in the Natural forests in terms of GS is Butea monosperma with $\mathbf{1 . 3 2 6 0} \mathrm{Mm}^{3}$ and in terms number of stems is Tectona grandis with $\mathbf{2 . 9 6 9 0}$ Million.
f. The top species in the Plantations in terms of GS and in terms number of stems is Mangifera indica with $\mathbf{7 . 8 0 5 7} \mathrm{Mm}^{3}$ of GS and Mangifera indica $\mathbf{1 5 . 2 4 3 8}$ Million stems.
g. The top species in the Rural Habitations in terms of GS as well as number of stems is Azadirachta indica with $41232.04 \mathrm{~m}^{3}$ and $\mathbf{3 1 4 8 0}$ stems.
h. The top species in the Urban Habitations in terms of GS is Peltophorum pterocarpum with GS of $\mathbf{6 4 9 7 . 8 9} \mathrm{m}^{3}$ and in terms of number of stems is Azadirachta indica with 6565.
i. The top species in the category of Scattered Trees in terms of GS as well as number of stems Azadirachta indica with GS of $\mathbf{2 2 4 7 5 6 . 2 1} \mathrm{m}^{3}$ and $\mathbf{0 . 2 7 6 6}$ Million stems.
j. In all there are $\mathbf{3 6 3}$ species of trees outside the notified forests. Of which $\mathbf{5 7}$ are Timber species, Six Pulpwood species and $\mathbf{3 0 0}$ Fuel wood species. The annual yield from the ToF is estimated to be $\mathbf{0 . 4 9 8 2}$ Mcum of Timber, $\mathbf{0 . 1 5 1 7}$ Mcum of Pulp and $\mathbf{0 . 2 1 9 8}$ Mcum of Fuel.

C. OTHER FINDINGS:

a) Total length of road network is estimated as $\mathbf{1 6 7 4 4 3 . 7} \mathrm{km}$. However, only 8268.2 km is covered with Avenue Plantations; which comes only to 4.94% of the network. In all 159175.5 km of road network is devoid of Avenue

Plantation; this includes $\mathbf{1 1 5 4 . 3}$ km of NH, $\mathbf{2 8 5 8 . 4} \mathbf{~ k m}$ of NH and $\mathbf{1 5 5 1 6 2 . 8} \mathrm{km}$ of Other Roads.
b) $\mathbf{1 4 2 3 . 9} \mathrm{km}$ length of Railway Tracks out of a total length of 1470.4 km is devoid of Avenue Plantation.
c) $\mathbf{1 4 7 3 . 3} \mathrm{km}$ length of Canal banks out of total length of $\mathbf{1 5 2 6 . 1} \mathrm{km}$ is devoid of tress.
d) 19828.0 km length of stream \& river banks, out of total length of $\mathbf{2 0 3 4 9 . 2} \mathbf{~ k m}$ length requires planting.

CHAPTER-I

1.1 Introduction:

Sustainable use and development of natural resources is key issue for mankind's survival. Forest is one of the most important natural resources. There has been a serious threat to the forest ecosystem due to human interference and unscientific exploitation. Therefore, there is an urgent need to conserve the existing gene pool in-situ before it is lost forever. Therefore, assessment of the status of the natural resources is vital.

Trees growing in the notified forests and outside play very important role in our life. The significance of trees is as follows:
i. Trees add to Ecological value: Trees fulfill fundamental ecological functions in soil and water conservation and environmental protection. Most of the agricultural production in India, where there are settled populations, has various species of trees. These are planted by the farmers for various purposes like food, fodder and small timber. Besides the direct benefits, these trees perform a valuable function of serving as wind brakes and shelterbelts. Therefore the improved management of agroforestry systems has potential impact for the whole rural ecosystem.
ii. Trees increase Economic value: Trees provide traditional medicines as well as basic food commodities, including a variety of gums, oils, proteins, fruits and drinks, which are of nutritional importance for a large number of people, especially in rural areas. Agroforestry lands are also a major source of wood and non-wood products, which provide significant household income and appear to be important for local economies.
iii. Trees increase Social/ Cultural value: Specific social groups including women, the poor, immigrants and young adults tend to be particularly involved in the gathering and sometimes the processing of NTFPs, because these activities require no cash investment. The marketing of these products is also predominantly a women's activity. It tends to generate a higher proportion of income for women than for men, which may have a positive impact on the nutritional status of children. People especially the rural masses attach special significance to specific trees that are not cut or harvested. These they grow in the form of traditionally managed sacred groves and other religious places. Certain castes trace their ancestry to certain trees, which they do not
cut. These castes also have their clan names similar to that of the trees. Thus specie is protected from being overexploited and is thus conserved for the posterity.
iv. Trees increase property value: It is well known fact that property that is well landscaped with trees and other plants is more valuable than property sitting on a barren landscape. Studies have shown that (i) Healthy trees can add up to 15 per cent to residential property value (ii) Office and industrial space in a wooded setting is more in demand and commands more value in sale or renting out (iii) Trees enhance productivity.

Thus the significance of Trees can be briefly summarized in the following manner:

- Ecological Reasons: Biomass, Carbon sequestration, Micro climate, Biodiversity (Ecosystem, Species, Gene), Watershed functions (soil and water conservation), Pollution control (Air, Noise), Wind break/shelter belts
- Economic Reasons: Wood, Wood fuel, small timber, poles, bamboo, NWFP (Food, Medicines, Pesticides, Fruits, Fodder, flower, etc.), Services (Ecotourism)
- Social/Cultural Reasons: Religion, Subsistence, Aesthetic, Recreation, Education, Employment

Due to increase in the population, human beings are cutting down more and more trees to meet their daily needs, which is proving to be harmful. This cutting is leading to the rise of natural calamities, such as floods, landslides or land erosion. It can be prevented by planting of trees. According to the recent forest cover assessment done by the Telangana State Forest Department, out of the recorded forest areas of $26903 \mathrm{Km}^{2}$, the forest cover (areas having vegetation cover of >0.1 canopy density) in Telangana is only $\mathbf{1 6 5 0 4 . 3 3} \mathbf{~ k m}^{2}$ ($286.66 \mathrm{~km}^{2}$ of Very Dense Forest, $7789.48 \mathrm{~km}^{2}$ of Moderately Dense Forest and $8428.19 \mathrm{~km}^{2}$ of Open Forest) which is 14.72% of the Geographical area ($112102 \mathrm{~km}^{2}$). Although the sustainable management of forest has been established as a priority by the Government, the loss of forest cover remains a major concern in the region. During the last (3) decade, Telangana has experienced highest negative rates of forest cover and area change. This deforestation is mainly attributed to the expansion of encroachments due to poverty, land hunger, inequitable lands distribution, population growth, smuggling, loss of regeneration due to grazing, incidence of fires, poaching etc. Out of these, encroachments over
forest areas have caused large scale deforestation. This process of loss of forest cover has led to fragmentation of forest lands.

To negate this, Government of Telangana has launched the flagship programme Telanganaku Hairitha Haram with an objective to increase the forest cover from the presnt about 20.93% including 6.21% of ToF to 33% of the Geographical Area. The goal of achieving 33% tree cover, is sought to be achieved by taking up activities inside and outside notified forests.

The activities proposed in the notified forests are

(i) Protecting and rejuvenating the existing degraded forests by way of giving preferential treatment to established regeneration, coppicing, singling and other silvicultural interventions collectively called as Assisted Natural Regeneration (ANR) (ii) Extensive Planting in blanks and open forests, i.e., Artificial Regeneration (AR) in the notified forests (iii) Protection against smuggling, fire, encroachment, grazing and poaching (iv) Taking up massive Water Harvesting Structures (WHS) to improve moisture regime. (v) Planting of wild fruit-bearing plants, development of grass land and fodder plot \& creation of water holes in Protected Areas (PA) to improve the biodiversity (vi) Establishment of Urban Lung Spaces \& (vii) Encouraging plantation works in RoFR areas

The activities proposed in the outside forests are

(i) Taking massive plantation programme outside forest areas under Social Forestry (ii) Agro-forestry Plantations for increased income levels and economic security of farmers (iii) Planting in Urban Residential colonies Creation of "Smrithivanams" (Memory Gardens) (iv) Avenue plantations along roadsides (v) Institutional plantations (vi) Barren Hill afforestation (vii) Tank foreshore plantations (viii) Riverbank plantations and (ix) Homestead \& Industrial areas

The state government has planned for planting of 230 crore seedlings/ saplings in a period of 4 years which included planting and development of 100 crore in notified forests, planting of 120 crore in outside forests and 10 crore in HMDA limits. It works out to 40 lakh seedlings per Assembly Constituency and 40,000 plants per village. This will lead to making of Telangana as GREENER TELANGANA.

1.2 Importance of TOF

The increasing forest cover loss and fragmentation of forests on one hand, the need to conserve remnants of representative forest ecosystems and the increasing demand for forest products in developing countries on the other hand; makes the development of innovative sustainable management
tools imperative for other less studied tropical forest resources such as Trees Outside Forests (ToF).

TOF, which comprise all trees outside the notified or recorded forests, are embedded in a landscape matrix composed by different land-uses. Trees outside forest (TOF) generally include trees on farmlands, in cities and human settlements, orchards, roadsides, pastures, banks of river, streams and canals and shelterbelts which are less than 20 m wide and 0.5 ha area (FAO 1998). The area occupied by TOF, the species composition, the volume, as well as specific characteristics such as the geometry and spatial distribution, can change depending on the biophysical, socioeconomic and political characteristics of a particular landscape.

It is recognized that TOF embrace not only many ecological functions but also economic functions. TOF play an important role in global carbon cycling, since they are large pools of carbon as well as potential carbon sinks and sources to the atmosphere. In the socioeconomic context, it is clear that agroforestry systems in developing countries provide a large part of fuel wood (FAO 1999). Trees outside forests are known to serve as a major source of food and feed, contribute to a balanced diet, and provide the ingredients for various remedies. In some parts of the world, a significant amount of timber and service wood comes from this sector. We are also wellaware of the many ways in which Trees outside forests are used in construction and crafts, and their useful role in providing shade and marking the boundaries of fields and other areas, not to mention the cultural and religious aspects. Trials confirm that intercropping with trees can result in much higher capture of annual rainfall. There is mounting evidence of their impact on soil and water conservation, and their essential role in antidesertification, climate control, and maintaining biological diversity and ecosystem balance. And yet, Trees outside forests remain a sort of overlooked and hidden treasure.

As explained above, considerable overlap is found between the economic and ecological functions of forest trees and that of TOF. Of course, non-forest and forest tree resources differ in the degree to which the different functions are present, and many ecosystem functions are specific to the forest and cannot be provided by TOF. But it is also instructive to look at TOF without making the direct comparison with forest trees. The TOF resource is often independent of the forest, forming a relevant component of non-forest landscape that should be taken into account in large-area for natural resources planning, from ecological as well as economic point of view.

In India forest legislation also extends to TOF (e.g. as regards transit permits). While there is some tradition and experience, as well as a
recognized need for sustainable management of forests, little is known about the dynamics of the tree resource outside forests. Data is therefore important as a foundation for developing management options to help sustain tree cover. It is also useful for planning, e.g. of wood production from TOF. In India there are certain rules governing felling and transportation which might act as a dis-incentive to tree farmers.

With changing of priorities of the people and development of the technology, it is essential to estimate the Growing stock outside the Forests as they reduce pressure on the natural/notified forests and also play an important role in the maintaining ecological balance, besides providing many other services. These also help conserve biodiversity, control erosion and provide fuel wood, fodder, fiber and small timber etc. Hence, assessment of Trees outside the Forest, in a way provides necessary inputs for sustainable management of the notified forests as well.

Keeping the above in view, Forest Survey of India (FSI) commenced estimation of TOF on a small scale in India in the year 1995 and for the entire country in 2003. However, the assessment of TOF by FSI suffers from the limitation of the small size of the sampling. Results based on this assessment do not reflect the true picture at the state and district levels.

Hence State Forest Department has decided to take up assessment of TOF.

1.4 OBJECTIVES:

The main objective of the TOF field inventory is to collect qualitative and quantitative information about the trees outside notified forests within precision limits, so as to serve data needs of development planning. These include:

- To estimate the contribution of TOF in tree cover
- To estimate the total number of trees in TOF,
- To estimate the Growing Stock of standing TOF,
- To evaluate the contribution of TOF in timber production,
- To evaluate the contribution of TOF in fuel wood, fodder and NTFP production,

CHAPTER-II - Materials and Methods

The inventory of the whole population requires large amount of money, time and qualified personnel. Due to the limitations of time, money and qualified personnel, sampling is the best solution to obtain the required information (De Gier). Hence, stratified random sampling is resorted to.

2.1: Sampling Design:

Sampling is the process of obtaining information by examining only a part of the population to draw conclusion about the whole. The procedure by which the samples are selected from the population is called Sampling Design. Stratified random sampling method was used for field data collection in the present study. The sampling design has been finalized by the Geomatics Center through intensive ground verification and in consultation with senior officers and field officers. For the enumeration purpose, each district was chosen as a primary sampling unit. High resolution Cartosat 1 Imagery has been used for stratification of the entire district into various homogeneous strata. The Cartosat 1 imagery was geo-referenced using GCPs collected in the field and with the help of DEM of ASTER \& SRTM, and also GoogleEarth, Bhuvan \& topomaps, as and when required. The Sampling Frame (Sample Size, Number of Samples, Size of the Sampling Unit, Sampling Intensity) for each Stratum was done after intensive field visits by the Officers of the Geomatics Center in consultation with senior officers \& field officers of the Department. After rigorous exercise, it was decided

- To have more number of samples with smaller size than few number of bigger samples, since more samples cover more area and better accuracy is achieved. It also meets the criteria of optimal sample size with same resources and time.
- To adopt FSI method, as nearly as possible, for easy comparison and universal acceptance.
- To collect more parameters, but as simple as possible, keeping in view the time and other resource limits.

The maps showing the geo-locations (longitude and latitude) where the detailed inventory was to be made, were overlaid on topomaps and supplied to field officers. The Plot Approach/ Description Form and Plot Enumeration Form were finalized and communicated to field officers. The detailed procedure for conducting field inventory was communicated to field officers in the form of a Manual in Telugu and English. Crew Leaders were formed at each Division. Necessary trainings were conducted in laying of

Plots and carrying out enumeration, at each Circle upto ABO level and (4) trainings at the State Forest Academy, Dulapally to Crew Leaders as well as the officers in the cadre of FROs and above.

The inventory design for various classes is as follows:

a) Natural Forests: Block and linear (growing naturally along the streams, nallahs and rivers etc. Since the tree cover is similar to that of notified forest areas, the regular inventory methodology used for Forest areas has been adopted for this category. Two stage sampling viz., Pre-inventory and final-inventory method has been adopted.

- The number of sample points required $\mathrm{N}_{\text {required }}$ has been estimated using probability proportionate stratified random sampling method. Sampling intensity was 0.01\%.
- Initially Pre-inventory has been conducted at 15 points randomly selected from above for each class. Based on variance in the population, the number of samples points $\mathrm{N}_{\text {required }}$ has been estimated using t-distribution at allowable error of 20% for carrying out the final inventory.
- Maximum of (i) and (ii) has been considered as $\mathrm{N}_{\text {required }}$
- The information collected during pre-inventory has been reused in generation of final statistics.
- $\quad 0.1$ Ha sample plot has been adopted for pre-inventory and final inventory.

b) Plantations

- Block: The crop in a block is generally uniform in nature in terms of age and species in 90% of the cases; hence the number of sample points $\mathrm{N}_{\text {required }}$ has been estimated using probability proportionate stratified random sampling method. Sampling intensity was 0.1\%.
i. Linear: The FSI method of using 125 m long * 10 m wide sample plot was considered ideal and was adopted, with 1% sampling intensity.

c) Habitations

i. Rural: Villages can be stratified based on the geographical area or population (which is adopted by FSI). Hence

- Area stratification was adopted since extents were readily available using Satellite imagery.
- The classes adopted were - Area between 5 to $3 \mathrm{Km}^{2}, 3$ to 1 $\mathrm{Km}^{2}, 1 \mathrm{~km}^{2}$ to 50 ha and 50 ha to 25 ha and area less than 25 ha.
- 6-10 samples (villages) of 0.1 ha in each class were selected using stratified Random Sampling Technique. Enumeration was carried out in each selected sample and extrapolated to entire area.
ii. Urban: Area based stratification was adopted similar to rural areas, since extents were readily available from the Satellite imagery.
- The classes adopted were - Area > $50 \mathrm{~km}^{2}, 50$ to $35 \mathrm{~km}^{2}, 35$ to $20 \mathrm{~km}^{2}, 20$ to $10 \mathrm{~km}^{2}, 10$ to $5 \mathrm{~km}^{2}$.
- Habitations were divided into segments by using systematic grid based on the manmade/natural features. Segments were selected at random for carrying out enumeration at 0.1% sampling intensity. Enumeration was carried out in 0.1 ha sample plot in the selected segments and extrapolated to entire area.
d) Scattered Trees: Individual trees also contribute substantially towards TOF. Counting the number of trees on screen is cumbersome and could be prone to errors as canopy of individual trees are not differentiable for many species. 60 samples plots as suggested by FSI have been selected at random. The sample size adopted was 3 Ha .

The random points generated in the above process were overlaid on the topo maps and supplied to the field officers, along with geographic coordinates, for carrying out the enumeration.

2.2: Laying of Sample Plots \& enumeration

a) Natural Forests: The size of the sample plot was 0.1 Ha and laid in the field as per the measurements shown in the following diagram:

After fixing the plot center, the N, S, E and W corners of the plot were fixed by measuring 22.36 m horizontal distance by tape/rope from center in all four directions. Stout pegs or bamboo of 1.5 m height were fixed at each corner and a flag attached to it. Correctness of the layout was checked by measuring each side, which measured 31.62 m . Wherever possible, ranging rods were used as corner posts. A red/white colour cloth was tied at the top end of these corner posts for getting clear visibility from different spots in the plot.

b) Plantations

i. Block Plantations: The size of the sample point was 0.1 Ha and was laid as described above in Natural Forests.
ii. Linear Plantations: The size of the sample plot was kept as $\mathbf{1 0 m}$ $\mathbf{x 1 2 5 m}$ and the number samples per district kept at 60. After reaching the center of the plot at given longitude and latitude, the plot center was fixed keeping 62.5 m on both sides. Accordingly, plot along the linear strip was laid out and width of 10 m taken with the help of chain/measuring tape from the starting canopy of the strip of trees. If any of the side was found to be less than 62.5 m then plot center was adjusted in such manner that each side of the adjusted plot was 62.5 m respectively, as shown in the figure below. The actual longitude and latitude of the mid-point of the length (adjusted plot center) of laid out sample plot was recorded in the TOF Form.

c) Habitations

i. Urban: The urban areas were delineated into five classes based on the geographical area calculated from the satellite imagery. Each urban habitation was subdivided into various blocks based on the roads and natural features; and these blocks were randomly selected for carrying out the enumeration. Total enumeration was done in each block.
ii. Rural: The rural areas were delineated into five classes based on the geographical area of the village calculated from the satellite imagery. In a District $6-10$ sample locations in each class were considered for total enumeration.
d) Scattered trees: In a district 60 square plots of 3.0 ha size were located \& enumerated. After reaching plot center at given longitude \& latitude a square plot of 3.0 ha was laid out. The layout of the plot has been carried out using any method mentioned below.
a) After fixing the plot center, the NE, SE, SW, NW corners of the plot were fixed by measuring 122.47 m horizontal distance from the plot center, by tape in all four directions. These four corners were marked by thin poles or bamboos of 5 cm dia and 1.5 m height. Ranging rods have been used as corner posts wherever possible. A red/white color cloth was tied at the top end of these corner posts for getting clear visibility from different spots in the plot. In case, the 3.0 ha square plot includes part of block or/and linear stratum then plot center was adjusted suitably to exclude undesired stratum.

b) Another method of laying out of sample plot was using GPS alone. Along with the lat-long of the center point, the other four corners lat-longs were provided in the map.

The dimensions of plot were checked so that all sides measured to 173.20 m .

2.3 Data Collection:

After laying out the plot, the enumeration work was taken up. Enumeration work commenced from Northwest corner of the plot and proceeded in clockwise direction. The information collected was recorded in (2) Forms i.e., Plot Approach/Description Form and (ii) Plot Enumeration Form. The work of data collection commenced in 2009-10 and completed in 2013-14. Adequate precautions were taken in filling up the forms. On completion of the work in a plot, the crew leaders have scrutinized the forms \& if any information was missing or doubtful, necessary corrective measures were taken. The data collected was then uploaded into TOFMIS module of TGFMIS for processing
2.4 Data Processing: A customized online application TOFMIS was developed for entering the data collected in the field forms and also for processing. The hardcopy data was sent to IT wing for cross verification. There are 3 stages in Data processing viz.,

1. Data checking or verification
2. Calculating volumes for trees and plots using volume equations
3. Generating Reports Division and District wise.

Data checking: The data submitted by field officers was verified by scientists at Geomatics center. If any inconsistency or recording error was found (particularly in dbh and more trees in the plot) necessary steps were taken duly consulting the field officers and the data rectified.

Calculating volumes for trees: After the completion of the verification of the data, the volume was calculated for each tree by using volume equations provided by FSI and TSFD. Then plot volumes also calculated.

Generation of reports District and Division wise: Using above volumes calculated and extent of areas calculated from CARTOSAT-1 images, The Stratum wise, District wise growing stock, unit volume per hectare, stems per ha and total stems estimated.

2.5 Comparison between TOF assessment methods of FSI and TSFD

Item	TOF by FSI	TOF by TSFD
Sampling unit	For assessment of TOF, entire country has been stratified into 14 homogenous physiographic zones. Within each strata few districts are chosen for sampling	District is taken as unit and all the districts are sampled.
Stratification	The area is divided into following strata: > Rural > Block > Linear > Scattered > Urban	The area is divided into following strata: > Natural - 4 Canopy density classes > Linear Plantations > Block Plantations > Rural - 5 classes based on area Urban - 5 classes based on area Scattered - areas don't fall into any of the above class.
Materials and methods	PAN (5.8 m) for some parts and LISS III (23.5 m) for rest	Cartosat-1 Stereo-pair (2.5 m)

Sampling for various classes

Natural forests	Clubbed in scattered class	4 density classes - 0.1 ha plots with 0.15 sampling intensity
Block plantations	50 samples of 0.1 ha each	0.1 ha plots with 0.15 sampling intensity
Linear Plantations	60 plots of $10 \mathrm{~m} \times 125 \mathrm{~m}$	60 plots of $10 \mathrm{~m} \times 125 \mathrm{~m}$
Rural	Clubbed with scattered class, since it is difficult to delineate areas on LISS III data	5 classes based on area and 6-10 samples in each class. Total enumeration.
Urban	Sampling unit is Urban Frame Survey (UFS) prepared by National Sample Survey Organization (NSSO).	5 classes based on area. Division of blocks based on permanent features for easy demarcation in the field. Total enumeration in each block.

Scattered	3 ha in non-hilly area and 0.5 ha in hilly area.	3 ha for all the areas.

2.6 Extents of tree cover, Sampling Intensity and No. of Sample

 Points:| $\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$ | Stratum | Canopy Class | Area in Km ${ }^{\mathbf{2}}$ | No. of Polygons | No. of sample points |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Natural Forests | | | | | |
| 1 | Block | MDF | 200.02 | 3497 | 220 |
| 2 | | OF | 554.61 | 29151 | 677 |
| 3 | | Scrub | 1440.75 | 85541 | 1385 |
| 4 | Linear* | | 129.87 | | |
| | | Total | 2325.23 | 118191 | 2282 |
| Plantations | | | | | |
| 1 | Block | | 1784.24 | 60434 | 574 |
| 2 | Linear | | 198.68 | 230170 | 598 |
| | | Total | 1982.92 | 290604 | 1172 |
| Habitations* | | | | | |
| 1 | Rural | | 67.54 | 23886 | 507 |
| 2 | Urban | | 39.62 | 249 | 497 |
| 3 | Scattered | Trees | 2542.21 | | 583 |
| | | Total | 2649.37 | 24115 | 1587 |
| | | and Total | 6957.52 | 432910 | 5041 |

*The notional extents of Habitations are taken as 3.27% of the total extent.

Map showing the distribution of sampling points

CHAPTER -III - Statewide results

3.1. About the State:

Telangana State lies between $15.85484^{\circ} \mathrm{N}$ \& $19.89643^{\circ} \mathrm{N}$ latitudes and $77.174920^{\circ} \mathrm{E} \& 81.80302^{\circ} \mathrm{E}$ longitudes. The Geographical Area of the State is $\mathbf{1 1 2 1 0 2} \mathbf{~ k m}^{\mathbf{2}}$ which is $\mathbf{3 . 4 0 \%}$ of the landmass of the country. The State has two physiographic zones viz., the hilly region having an altitude of 500 to 1324 m , the plateau having an altitude of 46 m to 1000 m . Godavari and Krishna are the two principal rivers of the State which drain into the Bay of Bengal through Andhra Pradesh. The River Godavari with its tributaries Pranahita, Manjeera, Maneru, Indravati, Kinnerasani, Pamuleru and Sileru, drains through the northern parts of the State into Bay of Bengal. The River Krishna with its tributaries Tungabhadra, Vedhavati, Musi, Paleru and Munneru flows through the southern parts of the State.

The climate of the State is generally dry with temperatures ranging from $8^{\circ} \mathrm{C}$ to $52^{\circ} \mathrm{C}$ and the annual rainfall is about $500-1100 \mathrm{~mm}$, received mainly from Southwest and Northeast monsoons. The geological formations found are: (1) The unclassified Archaean crystalline rocks, mainly the granite, (2) The Mesozoic coal bearing Gondwana strata, (3) Eocene lava flows (the Deccan traps) and (4) The semi-consolidated or unconsolidated tertiary and recent rocks. The soils found are Red, Black, Alluvial, Laterite and Saline/Alkaline. The population of the State is 35.29 million (2011 Census). The male population is 17.54 million and female 17.75 million. The Per capita forest area is $\mathbf{0 . 0 8} \mathbf{~ H a}$. The population density is 307 persons per km^{2}. The livestock population is 80 million.
3.2 Recorded Forests and Protected Areas: The total notified forest area of the State is $\mathbf{2 6 9 0 3 . 7 0} \mathrm{km}^{2}$, which is 24% of the geographical area. Out of $\mathbf{2 6 9 0 3 . 7 0} \mathrm{km}^{2}$ of notified forest area, $\mathbf{5 8 5 6 . 0 4} \mathrm{km}^{2}$ is included in the Protected Area network. The Adilabad District has the highest notified forest area of $7101.30 \mathrm{~km}^{2}$ and the Rangareddy \& Hyderabad has the lowest notified forest area of $771.85 \mathrm{~km}^{2}$ in the State. As regards the ratio of notified forest to geographical area, Khammam District has the highest 45.49 \% and Nalgonda the lowest 6.2 \%. As per Champion and Seth's classification, the Forests of State fall under Southern Moist Mixed Deciduous Forests, Dry Teak Forests, Southern Dry Mixed Deciduous Forests, Dry Deciduous Scrub, Dry Savannah Forests, Dry Bamboo Brakes, Southern Thorn Forests.

The forest cover* in the State based on the interpretation of IRS R2 LISS-III 2013 data (Dec'2013 - Feb'2014) and LISS IV data (2011-2014) is
$\mathbf{1 6 5 0 4 . 3 3} \mathrm{km}^{2}$, which is $\mathbf{1 4 . 7 2 \%}$ of the Geographical area. In terms of the forest canopy cover density classes the State has $286.66 \mathrm{~km}^{2}$ of Very Dense Forest (VDF), $\mathbf{7 7 8 9 . 4 8} \mathrm{km}^{\mathbf{2}}$ of Moderately Dense Forest (MDF) and $\mathbf{8 4 2 8 . 1 9}$ km^{2} of Open Forest (OF). The area of the Scrub is $4326.91 \mathrm{~km}^{2}$, Non-Forest $5930.77 \mathrm{~km}^{2}$ and Water Bodies $141.69 \mathrm{~km}^{2}$.
*The forest cover is defined as area covered by VDF, MDF and OF

3.3 Assessment of Resources under Trees Outside notified

 Forests:
A. TREE COVER:

Extent of tree cover under various classes is $6957.22 \mathrm{~km}^{2}$, which comes to $\mathbf{6 . 2 1} \%$ of the geographical area and details as follows:

Natural Forests	-	2325.23	$\mathbf{k m}^{2}$
Plantations	-	1982.92	$\mathbf{k m}^{2}$
Rural Habitations	-	67.55	$\mathbf{k m}^{2}$
Urban Habitations	-	39.61	$\mathbf{k m}^{2}$
Scattered Trees	-	2542.21	$\mathbf{k m}^{2}$

The natural forests, plantations \& habitations constitute 33.42\%, 28.50\% and $\mathbf{3 8 . 0 8 \%}$ of the total ToF Area respectively

The District and stratum wise details are as follows:

District/ Stratum	(Area in Km ${ }^{\text {2 }}$)							
	Natural Forests		Plantations		Habitations			Total
	Block	Linear*	Block	Linear	Rural	Urban	Scattered	
Adilabad	635.59	25.37	53.73	30.65	4.91	1.62	265.08	1016.94
Karim Nagar	335.33	20.46	192.54	33.17	11.02	2.56	278.52	873.6
Khammam	172.16	3.05	472.07	5.22	7.49	2.65	203.58	866.22
Mahaboob Nagar	92.56	5.72	228.05	9.46	9.31	2.27	482.23	829.6
Medak	456.60	43.46	44.69	48.17	6.28	2.13	259.67	861
Nalgonda	88.59	9.75	545.41	18.89	9.92	2.57	402.6	1077.73
Nizamabad	167.79	9.00	8.59	15.24	5.61	2.04	188.82	397.086
RR \& Hyd	117.56	7.81	134.21	22.79	4.13	20.48	194	500.98
Warangal	129.19	5.25	104.95	15.09	8.88	3.29	267.71	534.36
Total	2195.36	129.87	1784.24	198.68	67.55	39.61	2542.21	6957.52

*growing naturally along the rivers, streams, nallahs etc.

B. GROWING STOCK:

Overall Growing stock is estimated to be $\mathbf{2 1 . 4 4 4} \mathrm{Mm}^{3}$. Breakup is as follows:

- Natural Forests
- 8.770 Mm 3
- Plantations
- $11.531 \mathrm{Mm}^{3}$
- Rural Habitations
- 0.085 Mm 3
- Urban Habitations
- $0.045 \mathrm{Mm}^{3}$
- Scattered Trees
- $1.013 \mathrm{Mm}^{3}$

C. NUMBER OF STEMS:

Number of Stems outside the notified forests is estimated to be $\mathbf{4 4 . 1 5 4}$ Million. Breakup is as follows:

- Natural Forests
- Plantations
- Rural Habitations
- Urban Habitations
- Scattered Trees
- 20.451 Million
- 22.258 Million
- 0.093 Million
- 0.066 Million
- 1.286 Million

Top 10 species Based on Volume			Top 10 species Based on No. of Stems		
$\begin{aligned} & \hline \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in Mm^{3}	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems (Million)
1	Mangifera indica	8.3956	1	Mangifera indica	16.2573
2	Azadirachta indica	2.5712	2	Tectona grandis	4.0657
3	Butea monosperma	1.4733	3	Azadirachta indica	3.8156
4	Tectona grandis	1.1161	4	Butea monosperma	1.8610
5	Bombax religiosum	0.5048	5	Acacia nilotica	1.5770
6	Tamarindus Indica	0.4099	6	Bombax religiosum	1.0724
7	Madhuca indica	0.3584	7	Citrus Pseudolimon	0.8051
8	Acacia nilotica	0.3570	8	Eucalyptus	
9	Phoenix sylvestris	0.3265		camaldulensis	0.7070
10	Eucalyptus camaldulensis	0.3265	9	Lagerstroemia parviflora	0.6675
		0.2926	10	Albizia amara	0.6403

D. DETAILS OF TREE COVER AND GROWING STOCK:

i. Natural forests:

This stratum consists of 2 Major classes' viz., Block \& Linear. Again Block class is sub-divided into - MDF, OF \& Scrub. The total GS is estimated to be $\mathbf{8 . 7 7 0} \mathrm{Mm}^{3}$. The total number of stems estimated to be $\mathbf{2 0 . 4 5 1}$ million.

Volume/ha \& Total Volume; No. of Stems/ ha \& Total No. of stems:

Stratum	Canopy Class	$\begin{gathered} \text { Area in } \\ \mathbf{K m}^{2} \end{gathered}$	$\underset{\left(\mathbf{M m}^{\mathbf{3}}\right)}{\text { GS }}$	Unit GS $\left(m^{3} / h a\right)$	Stems in Million	Stems/ha in No's
Natural Forests (Block)	MDF	200.02	0.807	40.353	2.179	109
	OF	554.61	1.959	35.317	5.460	98
	Scrub	1440.75	4.788	33.230	11.150	77
Natural Forests (Linear)		137.05	1.216	88.730	1.662	112
Total		2332.43	8.770		20.451	

Top 10 species based on volume and number of Stems are shown below:

Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems (Million)
1	Butea monosperma	1.3260	1	Tectona grandis	2.9690
2	Azadirachta indica	1.1698	2	Azadirachta indica	2.1972
3	Tectona grandis	0.5906	3	Butea monosperma	1.7264
4	Mangifera indica	0.5507	4	Acacia nilotica	1.2203
5	Tamarindus Indica	0.2999	5	Mangifera indica	0.9716
6	Phoenix sylvestris	0.2926	6	Albizia amara	0.6159
7	Madhuca indica	0.2657	7	Phoenix sylvestris	0.5505
8	Acacia nilotica	0.2517	8	Lagerstroemia parviflora	
9	Pongamia pinnata	0.2019	9	parviflora	0.4647
10	Terminalia arjuna	0.1879	9	antidysentrica	0.3790
			10	Chloroxylon swietenia	0.3766

ii. Plantations:

Growing stock in this Stratum is estimated to be $\mathbf{1 1 . 5 3 1} \mathrm{Mm}^{3}$. Breakup is as follows:

- Block Plantations
- $\mathbf{1 0 . 8 7 8} \mathrm{Mm}^{3}$
- Linear Plantations
- $0.653 \mathrm{Mm}^{3}$

Number of Stems in this Stratum is estimated to be 22.258 Million. Breakup is as follows:

- Block Plantations
- Linear Plantations
- 0.576 Million

Volume/ha \& Total Volume; No. of Stems/ ha \& Total No. of stems:

S. No	Stratum	Area in $\mathbf{K m}^{\mathbf{2}}$	GS ($\mathbf{M m}^{\mathbf{3}}$)	$\begin{aligned} & \text { Unit GS } \\ & \left(\mathrm{m}^{3} / \mathrm{ha}\right) \end{aligned}$	Stems in Million	Stems/ha in No's
1	Block Plantations	1784.24	10.877	60.96	21.682	126
2	Linear Plantations	198.68	0.654	106.11	0.576	108
	Total	1982.92	11.531		22.258	

Top 10 species based on volume and number of Stems are shown below:

Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in $\mathbf{M m}^{\mathbf{3}}$	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems (Million)
1	Mangifera indica	7.8057	1	Mangifera indica	15.2438
2	Azadirachta Indica	1.0741	2	Azadirachta Indica	1.2313
3	Tectona grandis	0.4947	3	Tectona grandis	0.9993
4	Bombax religiosum	0.3163	4	Citrus Pseudolimon	0.8051
5	Syzygium jambos	0.1816	5	Bombax religiosum	0.7697
6	Citrus limon	0.1657	6	Citrus limon	0.5660
7	Citrus Pseudolimon	0.1457	7	Eucalyptus camaldulensis	
8	Eucalyptus tereticomis	0.1348	8	camaldulensis	0.3834 0.2760
9	Eucalyptus camaldulensis		9	Elaeis guineensis	0.2508
10	camaldulensis	0.1082 0.0980	10	Cocos nucifera	0.1646

iii. Rural Habitations:

The GS of this stratum is estimated to be $85137.91 \mathrm{~m}^{\mathbf{3}}$ and the total number of stems estimated to be $\mathbf{9 3 3 9 1}$. The unit volume is $\mathbf{1 2 . 6 0} \mathbf{m}^{\mathbf{3}}$ / ha and stems per ha are 13.83 .
Top 10 species based on volume and Stems are shown below:

Based on Volume	Based on No. of Stems

$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in $\mathbf{m}^{\mathbf{3}}$	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems
1	Azadirachta Indica	41232.04	1	Azadirachta	31480
2	Tamarindus Indica	9671.80	2	Tamarindus	10142
3	Cocos nucifera	3601.20		Indica	
4	Mangifera indica	2527.38	3	Cocos nucifera	6288
5	Pongamia pinnata	2481.59	4	Acacia nilotica	4681
6	Eucalyptus		5	Tectona grandis	4559
	tereticomis	2474.55	6	Leucaena	3916
7	Tectona grandis	1790.82		leucocephala	
8	Acacia nilotica	1330.07	7	Pongamia	3256
9	Borassus flabellifer	1326.37		pinnata	
10	Leucaena leucocephala	1280.36	8	Grewia rothi	2436
			9	Eucalyptus tereticomis	2435
			10	Mangifera indica	2183

iv. Urban Habitations

The total volume of this stratum is estimated to be $\mathbf{4 5 5 1 0 . 4 4} \mathrm{m}^{3}$. The unit volume is $\mathbf{1 1 . 4 9} \mathbf{m}^{\mathbf{3}} / \mathbf{h a}$. The total number of stems estimated is to be 65791 and stems per ha 16.61. The notional area of this stratum is covering $\mathbf{0 . 5 7 \%}$ of total TOF area.
Top 10 species based on volume and number of Stems are shown below:

Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in m^{3}	$\begin{array}{\|l\|} \hline \text { S. } \\ \hline \text { No } \\ \hline \end{array}$	Species name	No. of Stems
	Peltophorum		1	Azadirachta Indica	6565
1	pterocarpum	6497.89		Peltophorum	
2	Azadirachta Indica	5738.65	2	pterocarpum	4486
	Eucalyptus		3	Cocos nucifera	4056
3	camaldulensis	2800.92	4	Mangifera indica	3143
4	Pongamia pinnata	1496.11		Eucalyptus	
5	Cocos nucifera	1333.38	5	camaldulensis	3042
6	Azadirachta Indica	1307.10	6	Pongamia pinnata	2458
7	Azadirachta Indica	1174.57	7	Azadirachta Indica	1980
8	Azadirachta Indica	1161.64		Leucaena	
9	Azadirachta Indica	1139.13	8	Ieucocephala	1698
10	Tectona grandis	1089.31	9	Millingtonia hortensis	1470
			10	Saraca asoka	1343

v. Scattered Trees:

The total volume of this stratum is estimated to be $\mathbf{1 . 0 1 3} \mathbf{M m}^{\mathbf{3}}$ and unit volume is $\mathbf{3 . 9 8} \mathbf{~ m}^{\mathbf{3}}$ / ha. The total trees estimated to be $\mathbf{1 . 2 8 6}$ Million and stems/ ha 5.06.

Top 10 species based on volume and number of Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \\ & \hline \end{aligned}$	Species name	Volume in m 3	$\begin{array}{\|c\|} \hline \text { S. } \\ \text { No } \\ \hline \end{array}$	Species name	No. of Stems (Million)
1	Azadirachta Indica	224756.21	1	Azadirachta Indica	0.2766
2	Borassus flabellisformis	96205.84	2	Borassus flabellisformis	0.1090
3	Madhuca indica	83716.45	3	Bombax religiosum	0.0991
4	Butea monosperma	53589.04	4	Butea monosperma	0.0908
5	Bombax religiosum	48471.08	5	Tectona grandis	0.0905
6	Tamarindus Indica	37817.53	6	Azadirachta Indica	0.2766
7	Acacia nilotica	36406.40	7	Borassus flabellisformis	
8	Madhuca Indica	34934.00	7		
9	Borassus flabellifer	32765.44	8	Bombax religiosum	0.0991
10	Ficus benghalensis	29733.95	10	Butea monosperma	0.0908
			10	Tectona grandis	0.0905

E. OTHER FINDINGS:

i. Areas having Potential for taking up linear plantations:

a. Linear Plantations along the Roads:

Total length of road network is estimated as $\mathbf{1 6 7 4 4 3 . 7} \mathrm{km}$. However, only 8268.2 km is covered with Avenue Plantations; which comes only to 4.94% of the network. As much as $\mathbf{1 5 9 1 7 5 . 5} \mathrm{km}$ length of road network is devoid of Avenue Plantation; where planting could be taken up if these are found to be free from encroachments and encumbrances, in a phased manner. The details are given in the table below:
(Length in km)

District	Length of roads			Length already covered with plantations			Roads length available for plantation		
	NH	SH	Others	NH	SH	Others	NH	SH	Others
Adilabad	290.2	301.4	21546.0	84.3	85.2	197.4	205.9	216.2	21348.6
Karimnagar	135.3	221.9	16993.0	55.1	47.4	130.0	80.2	174.5	16863.0
Khammam	24.3	553.7	14476.0	3.2	49.8	504.0	21.1	503.9	13972.0
Mahabubnagar	162.0	714.7	27582.0	1.9	33.3	1314.0	160.1	681.4	26268.0
Medak	178.3	354.5	16089.0	28.6	120.7	1872.0	149.7	233.8	14217.0
Nalgonda	201.0	508.5	24422.0	23.9	52.9	1026.0	177.1	455.6	23396.0

Nizamabad	177.6	272.9	9744.3	27.4	48.4	652.4	150.2	224.5	9091.9
 RR	59.7	329.7	13957.0	5.9	55.9	1000.8	53.8	273.8	12956.2
Warangal	179.0	145.7	17824.0	22.8	51.0	773.9	156.2	94.7	17050.1
Total	$\mathbf{1 4 0 7 . 4}$	$\mathbf{3 4 0 3 . 0}$	$\mathbf{1 6 2 6 3 3 . 3}$	$\mathbf{2 5 3 . 1}$	$\mathbf{5 4 4 . 6}$	$\mathbf{7 4 7 0 . 5}$	$\mathbf{1 1 5 4 . 3}$	$\mathbf{2 8 5 8 . 4}$	$\mathbf{1 5 5 1 6 2 . 8}$

b. Linear Plantations along the Railway Tracks:

Total length of Railway Tracks is estimated as 1470.4 km. However, only 46.5 km is covered with Avenue Plantations; which comes only to 3.16% of the network. As much as 1423.9 km length of Railway Tracks is devoid of Avenue Plantation; where planting could be taken up, in a phased manner. The details are given in the table below:
(Length in km)

District	Total Length	With Trees	Available for plantation
Adilabad	118.5	9.7	$\mathbf{1 0 8 . 8}$
Karimnagar	87.8	9.0	$\mathbf{7 8 . 8}$
Khammam	90.0	3.2	$\mathbf{8 6 . 8}$
Mahabubnagar	207.0	1.6	$\mathbf{2 0 5 . 4}$
Medak	118.5	13.4	$\mathbf{1 0 5 . 1}$
Nalgonda	228.9	2.6	$\mathbf{2 2 6 . 3}$
Nizamabad	102.7	2.5	$\mathbf{1 0 0 . 2}$
Hyderabad \& RR	297.4	3.6	$\mathbf{2 9 3 . 8}$
Warangal	219.6	0.9	$\mathbf{2 1 8 . 7}$
Total	$\mathbf{1 4 7 0 . 4}$	$\mathbf{4 6 . 5}$	$\mathbf{1 4 2 3 . 9}$

c. Linear Plantations along the Canals:

Total length of Canals is estimated as $\mathbf{1 5 2 6 . 1}$ km. However, only 52.9 km is covered with Avenue Plantations; which comes only to 3.47% of the network. As much as $\mathbf{1 4 7 3 . 2} \mathrm{km}$ length of Railway Tracks is devoid of Avenue Plantation; where planting could be taken up, in a phased manner. The details are given in the table below:

District	Total Length	With Trees	Available for plantation
Adilabad	149.0	4.2	$\mathbf{1 4 4 . 8}$
Karimnagar	374.0	27.0	$\mathbf{3 4 7 . 0}$
Khammam	341.7	3.7	$\mathbf{3 3 8 . 0}$
Mahabubnagar	$\mathbf{1 1 4 . 6}$	0.1	$\mathbf{1 1 4 . 5}$
Medak	52.2	1.6	$\mathbf{5 0 . 6}$
Nalgonda	149.0	4.2	$\mathbf{1 4 4 . 8}$
Nizamabad	139.2	7.2	$\mathbf{1 3 2 . 0}$
Hyderabad \& RR	114.6	0.1	$\mathbf{1 1 4 . 5}$
Warangal	91.8	4.8	$\mathbf{8 7 . 0}$
Total	$\mathbf{1 5 2 6 . 1}$	$\mathbf{5 2 . 9}$	$\mathbf{1 4 7 3 . 2}$

d. Linear Plantations along the Streams/ Rivers:

Total length of Canals is estimated as 20349.2 km. However, only 521.2 km is covered with tree growth; which comes only to 2.56% of the network. As much as 19828 km length is devoid of tree growth; where planting could be taken up, in a phased manner, if feasible. The details are given in the table below:
(Length in km)

District	Total Length	With Trees	Available for plantation
Adilabad	1459.9	10.5	$\mathbf{1 4 4 9 . 4}$
Karimnagar	4722.0	289.0	$\mathbf{4 4 3 3 . 0}$
Khammam	3951.0	59.4	$\mathbf{3 8 9 1 . 6}$
Mahabubnagar	1454.9	10.5	$\mathbf{1 4 4 4 . 4}$
Medak	203.9	1.7	$\mathbf{2 0 2 . 2}$
Nalgonda	1459.9	10.5	$\mathbf{1 4 4 9 . 4}$
Nizamabad	255.6	7.8	$\mathbf{2 4 7 . 8}$

 RR	1454.9	10.5	$\mathbf{1 4 4 4 . 4}$
Warangal	5387.1	121.3	$\mathbf{5 2 6 5 . 8}$
Total	$\mathbf{2 0 3 4 9 . 2}$	$\mathbf{5 2 1 . 2}$	$\mathbf{1 9 8 2 8 . 0}$

ii. Anticipated Annual Yield:

In all, there are $\mathbf{3 6 3}$ species of trees outside the notified forests. Of which 57 are Timber species, Six Pulpwood species and $\mathbf{3 0 0}$ Fuel wood species. Rotation period for each species was taken into consideration and the annual yield is estimated. The total volume of timber is estimated as $\mathbf{1 5 . 1 5 4 1} \mathrm{Mm}^{3}, \mathbf{0 . 5 6 7 0} \mathrm{Mm}^{3}$ from pulpwood and $\mathbf{5 . 7 2 2 9}$ Mm^{3} from Fuel wood annual yield from the ToF is estimated to be $\mathbf{0 . 4 9 8 2}$ Mcum of Timber, $\mathbf{0 . 1 5 1 7}$ Mcum of Pulp and $\mathbf{0 . 2 1 9 8}$ Mcum of Fuel.

SI.No.	Class	No.of Species	Annual Yeild (Mcum)
1	Timber	57	0.4982
2	Pulp	6	0.1517
3	Fuel	300	0.2198
	Total	$\mathbf{3 6 3}$	$\mathbf{0 . 8 6 9 8}$

CHAPTER 4 - DISTRICT WISE RESULTS 4.1 ADILABAD DISTRICT

4.1.1 About the District:

The Adilabad district is located in Northern part of Telangana. The total geographical area of the district is $\mathbf{1 6 1 2 8} \mathrm{km}^{2}$ and the notified forest is $7101.29 \mathrm{~km}^{2}$, which is 44.03% of the geographical area of the district. There are two circles in the District viz., Adilabad Circle with four divisions ($4441.2 \mathrm{~km}^{2}$) and Kawal Tiger Reserve Circle with two divisions ($\mathbf{2 6 6 0 . 0 9}$ K^{2}).

4.1.2 Assessment of Resources under Trees Outside notified Forests:

A. TREE COVER:

Extent of tree cover under various classes is $991.59 \mathrm{~km}^{2}$, which comes to 6.15% of the geographical area and details as follows:

Natural Forests	-	$\mathbf{6 6 0 . 9 5} \mathbf{~ K m}^{\mathbf{2}}$
Plantations	-	$\mathbf{5 9 . 0 1} \mathbf{K m}^{2}$
Rural Habitations	-	$\mathbf{4 . 9 1} \mathbf{K m}^{2}$
Urban Habitations	-	$\mathbf{1 . 6 2} \mathbf{~ K m}^{2}$
Scattered Trees	-	$\mathbf{2 6 5 . 1 0} \mathbf{K m}^{\mathbf{2}}$

The natural forests, plantations and habitations constitute 66.66\%, 5.95\% and $\mathbf{2 7 . 3 9 \%}$ of the total ToF Area respectively.
The stratum wise details are as follows:

S.No	Stratum	Sub stratum	Canopy Class	No. of sample plots	Area in $\mathbf{K m}^{2}$
1	Natural Forests	Block	MDF	96	57.86
			OF	291	171.20
			Scrub	371	406.53
		Linear		36	25.37
		Total			660.95
2	Plantations	Block		60	53.73
		Linear		24	5.28
		Total			59.01
3	Habitations	Rural		60	4.91

		Urban		36	1.62
		Total		$\mathbf{6 . 5 3}$	
4	Scattered Trees			60	$\mathbf{2 6 5 . 1 0}$
		Grand Total		$\mathbf{1 0 3 4}$	$\mathbf{9 9 1 . 5 9}$

Distribution of TOF points in the district

B. GROWING STOCK AND NUMBER OF STEMS:

Overall Growing stock is estimated to be $\mathbf{3 . 7 0 4 1} \mathrm{Mm}^{3}$. Breakup is as follows:

- Natural Forests
- 2.7021 Mm 3
- Manmade Plantations
- $0.7500 \mathrm{Mm}^{3}$
- Habitations (Rural)
- $0.0034 \mathrm{Mm}^{3}$
- Habitations (Urban)
- $0.0019 \mathrm{Mm}^{3}$
- Scattered Trees
- 0.2467 Mm 3

Number of Stems estimated to be 7.6959 Million. Breakup is as follows:

- Natural Forests
- 5.9484 Million
- Manmade Plantations
- $\mathbf{1 . 4 7 4 7}$ Million
- Habitations (Rural)
- 0.0039 Million
- Habitations (Urban) - $\mathbf{0 . 0 0 3 2}$ Million
- Scattered Trees - $\mathbf{0 . 2 6 5 7}$ Million

C. THE STRATUM WISE DETAILS ARE AS FOLLOWS:

i. Natural forests

The total GS of this Stratum is estimated to be $\mathbf{2 . 7 0 2} \mathrm{Mm}^{3}$. Total number of stems is $\mathbf{5 . 9 4 8 4}$ Million.

S.no	Sub Stratum	Class	Area in $\mathbf{K m}^{2}$	$\begin{gathered} \text { Total GS } \\ \left(\mathbf{M m}^{3}\right) \end{gathered}$	Unit volume ($\mathrm{m}^{3} / \mathrm{ha}$)	No. of Stems in Million	Stems/ ha in No's
1	Block	MDF	57.858	0.332	57.310	0.542	94
2		OF	171.200	0.380	22.203	1.104	64
3		Scrub	406.528	1.800	44.277	4.074	100
4	Linear		25.368	0.190	66.238	0.228	90
Total			660.955	2.702		5.948	

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems (Million)
1	Butea monospema	0.6799	1	Tectona grandis	1.6324
2	Tectona grandis	0.3395	2	Butea monospema	0.6340
3	Madhuca indica	0.2657	3	Mangifera indica	0.4307
4	Mangifera indica	0.1953	4	Azadirachta indica	0.3133
5	Azadirachta indica	0.1595	5	Lagerstroemia parvifol	0.1892
6	Terminalia arjuna	0.1583	6		0.1892
7	Albizia lebbeck	0.0707	6	Cleistanthus collinus	0.1448
	Borassus	0.0707	7	Wrightia tinctoria	0.1442
8	flabelliformis Holoptelia	0.0640	8	Holarrhena antidysente	0.1246
9	Holoptelia integrefoli	0.0599	9	Madhuca indica	0.1088
10	Tamarindus indica	0.0491	10	Eucalyptus camaldulens	0.1063

ii. Plantations:

The total GS of this Stratum is estimated to be $\mathbf{0 . 7 5 0} \mathrm{Mm}^{3}$. Total number of stems estimated to be $\mathbf{1 . 4 7 4}$ Million.

Stratum	Area in $\mathbf{K m}^{\mathbf{2}}$	Total GS $\left.\mathbf{(M m}^{\mathbf{3}}\right)$	Unit volume $\left(\mathbf{m}^{\mathbf{3}} / \mathbf{h a)}\right.$	No. of Stems in Million	Stems/ ha in No's
Block	53.729	0.698	129.951	1.435	267

Linear	5.279	0.052	98.080	0.039	74
Total	59.008	$\mathbf{0 . 7 5 0}$		$\mathbf{1 . 4 7 4}$	

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
S. No	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems (Million)
1	Mangifera indica	0.6767	1	Mangifera indica	1.3753
2	Azadirachta indica	0.0131	2	Eucalyptus camaldulens	0.0257
3	Eucalyptus camaldulens	0.0248	3	Azadirachta indica	0.0257
4	Pithecellobium		4	Tamarindus indica	0.0177
	dulce	0.0045	5	Butea monospema	0.0046
5	Madhuca indica	0.0007	6	Tectona grandis	0.0034
6	Tamarindus indica	0.0010	7	Pithecellobium	
7	Albizia lebbeck	0.0091	7	dulce	0.0025
8	Cassia siamea	0.0017	8	Pongamia pinnata	0.0025
9	Pongamia pinnata	0.0090	9	Madhuca indica	0.0023
10	Ficus racemosa	0.0018	10	Cassia siamea	0.0021

iii. Rural Habitations:

The total GS of this Stratum is estimated to be $\mathbf{3 4 0 8 . 9 8} \mathrm{m}^{3}$. Total number of stems estimated to be 3929. The unit volume (per ha) is $\mathbf{6 . 9 4 0}$ m^{3} and stems per ha are 8.
Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in m^{3}	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems
1	Azadirachta indica	675.81	1	Azadirachta indica	1037
2	Vitex pinnata	472.65	2	Tectona grandis	439
3	Tamarindus indica	457.71	3	Leucaena leucocephala	303
4	Borassus flabelliformi	188.21	4	Tamarindus indica	290
5	Mangifera indica	151.00	5	Borassus flabelliformi	157
6	Albizia lebbeck	129.90	6	Pongamia pinnata	156
7	Ficus benghalensis	120.75	7	Eucalyptus camaldulens	136
8	Bombax ceiba	116.73	8		136
9	Ficus racemosa	96.20	9	Grewia rothi	111
10	Ficus religiosa	78.64	10	Zizyphus mauritiana	110

iv. Urban Habitations:

The total GS of this Stratum is estimated to be $\mathbf{1 8 8 7 . 3 0} \mathrm{m}^{3}$. Total number of stems estimated to be 3154.09. The unit volume (per ha) is $11.65 \mathrm{~m}^{3}$ and stems per ha are 19.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in \mathbf{m}^{3}	S.	Species name	No. of Stems
1	Azadirachta indica	897.21	1	Azadirachta indica	1065
2	Mangifera indica	262.58	2	Mangifera indica	541
3	Delonix regia	103.50	3	Grewia rothi	373
4	Albizia lebbeck	89.29	4	Pongamia pinnata	179
5	Pongamia pinnata	64.03	5	Tamarindus indica	117
6	Tamarindus indica	61.74	6	Delonix regia	83
7	Syzygium cuminii	51.06	7	Leucaena leucocephala	74
8	Grewia rothi	46.98	8		69
9	Ficus religiosa	45.42	9	Syzygium cuminii	69
10	Leucaena leucocephala	41.38	10	camaldulens	62
			10	Cocos nucifera	55

v. Scattered Trees:

The total GS of this Stratum is estimated to be $\mathbf{0 . 2 4 6} \mathbf{M m}^{3}$. Total number of stems estimated to be $\mathbf{0 . 2 6 5}$ Million. The unit volume (per ha) is $9.308 \mathrm{~m}^{3}$ and stems per ha are 10.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems
1	Madhuca indica	0.0837	1	Borassus flabelliformis	53459
2	Borassus flabelliformi	0.0580	2	Tectona grandis	53459
3	Azadirachta indica	0.0232	3	Azadirachta indica	43003
4	Butea monospema	0.0145	4	Butea monospema	25920
5	Mangifera indica	0.0084	5	Madhuca indica	12371
6	Tectona grandis	0.0080	6	Zizyphus mauritiana	6038
7	Delonix regia	0.0065	7	Others	5302
8	Tamarindus indica	0.0050	8	Pongamia pinnata	4418
9	Ficus religiosa	0.0047	9	Acacia nilotica	3976
10	Ficus racemosa	0.0046	10	Ficus racemosa	3387

4.1.3 OTHER FINDINDS:

a. Roads having Potential for taking up plantations:

i. National High Way: NH 44 \& 63 are passing through this district with a length of $\mathbf{2 9 0 . 2} \mathbf{~ k m}$. However, it is observed that only 84.3 km length is covered with trees along the road, which comes only to 29.05% of the NH. As much as 205.9 km length of road network is devoid of Avenue Plantation; where planting could be taken up if found to be free from encroachments and encumbrances, in a phased manner.
ii. State High Way: The length of the state highway is $\mathbf{3 0 1 . 4}$ km, out of which only 85.2 km length is covered with the trees along the road, which comes to 28.27% of SH. Balance $\mathbf{2 1 6 . 2}$ km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
iii. Other Roads: The length of these roads is 21546 km, out of which only 197.4 km length is with the trees, which comes to 0.92% of other road network. Balance 21348.6 km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
b. Railway Tracks having Potential for taking up plantations: The length of the railway track is estimated as $\mathbf{1 1 8 . 5} \mathrm{km}$; however, only 9.7 km length is covered trees, which comes to 8.19% of the length of the railway track. Balance $\mathbf{1 0 8 . 8} \mathbf{k m}$ length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
c. Canals: The length of the canals is estimated as 149 km ; however, only 4.2 km length is covered trees, which comes to 2.82% of the length of the canals. There is good scope for taking up planting along the canals, if suitable.
d. Streams/ Rivers: The length of the streams/ rivers is estimated as 1454.9 km ; however, only $\mathbf{1 0 . 5} \mathrm{km}$ length is covered trees, which comes to 0.72% of the length of the canals. There is good scope for taking up planting, if suitable.

4.2 KARIMNGAR DISTRICT

4.2.1 Introduction:

The Karimnagar district is located in Northern part of Telangana. The total geographical area of the district is $\mathbf{1 1 8 5 5 . 1 1} \mathrm{km}^{2}$, out of this notified forest area is $\mathbf{2 3 6 1 . 2 8} \mathrm{km}^{2}$. There are two forest divisions in the district.

4.2.2 Assessment of resources under Trees Outside notified Forests:

A. TREE COVER:

Extent of tree cover under various classes is $\mathbf{8 5 3 . 1 4} \mathrm{km}^{2}$, which comes to 7.20% of the geographical area and details as follows:

Natural Forests	-	355.79	$\mathbf{k m}^{2}$
Plantations	-	$\mathbf{2 0 5 . 2 5}$	$\mathbf{k m}^{2}$
Rural Habitations	-	$\mathbf{1 1 . 0 2}$	$\mathbf{k m}^{\mathbf{2}}$
Urban Habitations	-	$\mathbf{2 . 5 6}$	$\mathbf{k m}^{\mathbf{2}}$
Scattered Trees	-	$\mathbf{2 7 8 . 5 2}$	$\mathbf{k m}^{\mathbf{2}}$

The natural forests, plantations and habitations constitute 41.70\%, $\mathbf{2 4 . 0 6 \%}$ and $\mathbf{3 4 . 2 4 \%}$ of the total ToF Area respectively.

S.No	Stratum	Sub stratum	Canopy Class	No. of sample plots	Area in $\mathbf{K m}^{2}$
1	Natural Forests	Block	MDF	55	55.63
			OF	120	116.74
			Scrub	150	162.96
		Linear		19	20.46
		Total			355.79
2	Plantations	Block		60	192.54
		Linear		41	12.71
		Total			205.25
3	Habitations	Rural		50	11.02
		Urban		66	2.56
		Total			13.58
4	Scattered Trees			60	278.52

	Grand Total	621	853.14

Distribution of TOF points in the district

B. GROWING STOCK AND NUMBER OF STEMS:

Overall Growing stock is estimated to be $\mathbf{1 . 9 5 7 6} \mathrm{Mm}^{3}$. Breakup is as follows:

- Natural Forests
- 0.6575 Mm 3
- Plantations
- 1.2602 Mm 3
- Rural Habitations
- $0.0065 \mathrm{Mm}^{3}$
- Urban Habitations
- $0.0011 \mathrm{Mm}^{3}$
- Scattered Trees
- $0.0323 \mathrm{Mm}^{3}$

Number of Stems is 5.5499 Million. Breakup is as follows:

- Natural Forests
- 2.4784 Million
- Plantations
- 2.9912 Million
- Rural Habitations
- 0.0102 Million
- Urban Habitations
- 0.0025 Million
- Scattered Trees
- 0.0676 Million

C. THE STRATUM WISE DETAILS ARE AS FOLLOWS:

i. Natural forests:

The total GS of this Stratum is estimated to be $\mathbf{0 . 6 5 7 5} \mathrm{Mm}^{3}$. Total number of stems estimated to be $\mathbf{2 . 4 7 8 4}$ Million.

S.no	Sub Stratum	Class	Area in $K^{\prime 2}$	$\begin{aligned} & \text { Total GS } \\ & \left(\mathrm{Mm}^{3}\right) \end{aligned}$	Unit volume ($\mathrm{m}^{3} / \mathrm{ha}$)	No. of Stems in Million	Stems/ ha in No's
1	Block	MDF	55.631	0.1881	57.310	0.653	93
2		OF	116.741	0.1185	22.203	0.681	64
3		Scrub	162.962	0.2266	44.273	0.973	100
4	Linear		20.461	0.1243	60.757	0.171	90
Total			355.795	0.6575		2.478	

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems (Million)
1	Mangifera indica	0.1068	1	Tectona grandis	0.5111
2	Phoenix sylvestris	0.0784	2	Butea monosperma	0.2726
3	Tectona grandis	0.0605	3	Acacia nilotica	0.2715
4	Borassus flabellifer	0.0493	4	Azadirachta Indica	0.2176
5	Butea monosperma	0.0447	5	Phoenix sylvestris	0.1888
6	Azadirachta Indica	0.0439	6	Dalbergia sissoo	0.0944
7	Acacia nilotica	0.0338	7	Terminalia arjuna	0.0804
8	Bombax religiosum	0.0258	8	Holarrhena	
9	Albizia lebbeck	0.0230		antidysenterica	0.0728
	Terminalia		9	Albizia amara	0.0635
10	tomentosa	0.0155	10	Mangifera indica	0.0629

ii. Plantations:

The total GS of this Stratum is estimated to be $\mathbf{1 . 2 8 0 3} \mathrm{Mm}^{3}$. Total number of stems estimated to be 3.1047Million.

Stratum	Area in $\mathbf{K m}^{\mathbf{2}}$	Total GS $\mathbf{(M m}^{\mathbf{3}} \mathbf{)}$	Unit volume $\mathbf{(\mathbf { m } ^ { \mathbf { 3 } } / \mathbf { h a) }}$	No. of Stems in Million	Stems/ ha in No's
Block	192.537	1.1340	129.951	2.8977	267
Linear	12.706	0.1262	90.080	0.0935	74
Total	205.233	$\mathbf{1 . 2 6 0 2}$		$\mathbf{2 . 9 9 1 2}$	

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \hline \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in Mm 3	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems (Million)
1	Mangifera indica	1.0053	1	Mangifera indica	2.7187
2	Samanea saman	0.0538	2	Azadirachta Indica	0.0458
3	Eucalyptus		3	Tectona grandis	0.0301
3	camaldulensis	0.0407	4	Bombax religiosum	0.0294
4	Azadirachta Indica	0.0393	5	Eucalyptus	
5	Bombax religiosum	0.0323	5	camaldulensis	0.0225
6	Albizia lebbeck	0.0221	6	Samanea saman	0.0217
7	Mangifera indica	1.0053	7	Phoenix sylvestris	0.0161
8	Samanea saman	0.0538	8	Mangifera indica	2.7187
9	Eucalyptus camaldulensis		9	Azadirachta Indica	0.0458
10	Azadirachta Indica	0.0407	10	Tectona grandis	0.0301

iii. Rural Habitations:

The total GS of this Stratum is estimated to be $6490.78 \mathrm{~m}^{3}$. Total number of stems estimated to be 10221. The unit volume (per ha) is $\mathbf{5 . 8 9 0}$ m^{3} and stems per ha are 9.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
S. No	Species name	Volume in m^{3}	$\begin{aligned} & \text { S. } \\ & \text { No } \\ & \hline \end{aligned}$	Species name	No. of Stems
1	Azadirachta Indica	2884.02	1	Azadirachta Indica	3781
2	Tamarindus Indica	1060.38	2	Tamarindus Indica	1394
3	Madhuca Indica	459.00	3	Acacia nilotica	848
4	Bombax religiosum	315.55	4	Tectona grandis	715
5	Cocos nucifera	261.38	5	Cocos nucifera	497
6	Borassus flabellifer	231.32	6	Leucaena	
7	Acacia nilotica	160.57	7	Bombax religiosum	291

8	Pongamia pinnata	123.33	8	Grewia rothi	255
9	Tectona grandis	95.97	9	Borassus flabellifer	206
10	Albizia lebbeck	94.57	10	Dalbergia sissoo	158

iv. Urban Habitations:

The total GS of this Stratum is estimated to be $\mathbf{1 1 7 9 . 3 9 2} \mathrm{m}^{3}$. Total number of stems estimated to be 2479. The unit volume (per ha) is 4.607 m^{3} and stems per ha are 9.
Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \hline \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in m^{3}	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems
1	Azadirachta Indica	563.34	1	Azadirachta Indica	892
2	Bombax religiosum	78.25	2	Tectona grandis	241
3	Samanea saman	58.86	3	Pongamia pinnata	154
4	Tamarindus Indica	53.17	4	Acacia nilotica	129
5	Cocos nucifera	47.74	5	Mangifera indica	127
6	Mangifera indica	47.73	6	Cocos nucifera	105
7	Tectona grandis	44.47	7	Tamarindus Indica	103
8	Delonix regia	38.83	8	Bombax religiosum	91
9	Azadirachta Indica	563.34	9	Grewia rothi	74
10	Bombax religiosum	78.25	10	Delonix regia	62

v. Scattered Trees:

The total GS of this Stratum is estimated to be $\mathbf{0 . 0 3 2 3} \mathbf{M m}^{3}$. Total number of stems estimated to be $\mathbf{0 . 0 6 7 6}$ Million. The unit volume (per ha) is $\mathbf{9 . 3 0 8} \mathrm{m}^{3}$ and stems per ha are $\mathbf{2}$.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems
1	Azadirachta Indica	0.0067	1	Azadirachta Indica	18103
2	Tectona grandis	0.0033	2	Tectona grandis	14235
3	Ficus religiosa	0.0031	3	Butea monosperma	6653
4	Butea monosperma	0.0028	4	Acacia nilotica	4642
5	Ficus benghalensis	0.0025	5	Tamarindus Indica	3714
6	Tamarindus Indica	0.0022	6	Phoenix sylvestris	3404
7	Ficus mollis	0.0018	7	Mangifera indica	2476
8	Mangifera indica	0.0018	8	Eucalyptus tereticomis	2011

9	Albizia lebbeck	0.0013		9	Grewia rothi	1547
10	Phoenix sylvestris	0.0011		10	Bombax religiosum	1393

4.2.3 OTHER FINDINDS:

a. Roads having Potential for taking up plantations:

i. National High Way: NH 63 are passing through this district with a length of 135.3 km . However, it is observed that only 55.1 km length is covered with trees along the road, which comes only to 40.72% of the NH. As much as $\mathbf{8 0 . 2}$ km length of road network is devoid of Avenue Plantation; where planting could be taken up if found to be free from encroachments and encumbrances, in a phased manner.
ii. State High Way: The length of the state highway is 221.9 km, out of which only 47.4 km length is covered with the trees along the road, which comes to 21.36% of SH. Balance $\mathbf{1 7 4 . 5}$ km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
iii. Other Roads: The length of these roads is 16993 km , out of which only 130 km length is covered with the trees, which comes to 0.77% of other road network. Balance 16863 km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
b. Railway Tracks having Potential for taking up plantations: The length of the railway track is estimated as 87.8 km ; however, only 9 km length is covered trees, which comes to 10.25% of the length of the railway track. Balance 78.8 km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
c. Canals: The length of the canals is estimated as 374 km ; however, only 27 km length is covered trees, which comes to 7.22% of the length of the canals. There is good scope for taking up planting along the canals, if suitable.
d. Streams/ Rivers: The length of the streams/ rivers is estimated as 4722 km; however, only 289 km length is covered trees, which comes to 6.12% of the length of the canals. There is good scope for taking up planting, if suitable.

4.3 KHAMMAM DISTRICT

4.3.1 Introduction:

The Khammam district is located in Northern east part of Telangana. The total geographical area of the district is $\mathbf{1 3 0 8 0 . 1 7} \mathrm{km}^{2}$, out of this notified forest area is $\mathbf{5 9 9 5 . 2 0} \mathrm{km}^{2}$. There are four territorial forest divisions and one wildlife management division in the district.

4.3.2 Assessment of resources under Trees Outside notified Forests:

A. Tree cover:

Extent of tree cover under various classes is $\mathbf{8 6 3 . 1 7} \mathrm{km}^{2}$, which comes to 6.60% of the geographical area and details as follows:

Natural Forests	-	$\mathbf{1 7 5 . 2 1}$	$\mathbf{k m}^{\mathbf{2}}$
Plantations	-	$\mathbf{4 7 4 . 2 4}$	$\mathbf{k m}^{2}$
Rural Habitations	-	$\mathbf{7 . 4 9}$	$\mathbf{k m}^{2}$
Urban Habitations	-	$\mathbf{2 . 6 5}$	$\mathbf{k m}^{2}$
Scattered Trees	-	$\mathbf{2 0 3 . 5 8}$	$\mathbf{k m}^{2}$

The natural forests, plantations and habitations constitute 20.30\%, $\mathbf{5 4 . 9 4 \%}$ and $\mathbf{2 4 . 7 6 \%}$ of the total ToF Area respectively.

The stratum wise points and extent of area shown below:

S.No	Stratum	Sub stratum	Canopy Class	No. of sample plots	Area in Km ${ }^{2}$
1	Natural Forests	Block	MDF	45	60.68
			OF	54	52.28
			Scrub	60	59.2
		Linear		35	3.05
		Total			175.21
2	Plantations	Block		64	472.07
		Linear		43	2.17
		Total			474.24
3	Habitations	Rural		57	7.49
		Urban		64	2.65

		Total		$\mathbf{1 0 . 1 4}$	
4	Scattered Trees			60	203.58
		Grand Total		$\mathbf{4 8 2}$	$\mathbf{8 6 3 . 1 7}$

Distribution of TOF points in the district

B. GROWING STOCK AND NUMBER OF STEMS:

Overall Growing stock is estimated to be $4.7275 \mathrm{Mm}^{3}$. Breakup is as follows:

- Natural Forests
- $0.4508 \mathrm{Mm}^{3}$
- Plantations
- 4.1299 Mm 3
- Rural Habitations
- $0.0069 \mathrm{Mm}^{3}$
- Urban Habitations
- $0.0033 \mathrm{Mm}^{3}$
- Scattered Trees
- 0.1366 Million

Number of Stems is estimated to be 8.5879 Million. Breakup is as follows:

- Natural Forests
- 1.6579 Million
- Plantations
- Rural Habitations
- Urban Habitations
- Scattered Trees
- 6.7693Million
- 0.0112 Million
- 0.0043 Million
- 0.1452Million

C. THE STRATUM WISE DETAILS ARE AS FOLLOWS:

i. Natural forests:

The total GS of this Stratum is estimated to be $\mathbf{0 . 4 5 0 8} \mathrm{Mm}^{3}$. Total number of stems estimated to be $\mathbf{1 . 6 5 7 9}$ Million.

S.no	Sub Stratum	Class	$\begin{gathered} \hline \text { Area in } \\ \mathbf{K m}^{2} \end{gathered}$	$\begin{gathered} \text { Total GS } \\ \left(\mathrm{Mm}^{3}\right) \end{gathered}$	Unit volume ($\mathrm{m}^{3} / \mathrm{ha}$)	No. of Stems in Million	Stems/ ha in No's
1	Block	MDF	60.685	0.1140	87.778	0.5327	87
2		OF	52.279	0.2081	39.795	0.5296	101
3		Scrub	59.507	0.1011	17.074	0.5605	94
4	Linear		3.050	0.276	90.628	0.0351	114
Total			175.521	0.4508		1.6579	

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \\ & \hline \end{aligned}$	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{array}{\|c\|} \hline \text { S. } \\ \text { No } \\ \hline \end{array}$	Species name	No. of Stems (Million)
	Dalbergia		1	Tectona grandis	0.1030
1	paniculata Lannea	0.0613	2	Lagerstroemia parviflora	0.0896
2	coromandelica	0.0275	3	Diospyros melanoxylon	0.0845
3	parviflora	0.0257	4	Strychnos	
4	Borassus flabellifer	0.0181		nuxvomica	0.0713
5	Azadirachta Indica	0.0176	5	Azadirachta Indica	0.0645
6	Tectona grandis	0.0163	6	Cleistanthus collinus	0.0638
7	Diospyros melanoxylon	0.0162	7	Lannea coromandelica	0.0622
8	Mangifera indica	0.0148	8	Dalbergia paniculata	0.0596
9	Anogeissus latifolia	0.0112	9	Albizia amara	0.0551
10	Xylia xylocarpa	0.0101	10	Pterospermum xylocarpum	0.0419

ii. Plantations

The total GS of this Stratum is estimated to be $4.1299 \mathrm{Mm}^{3}$. Total number of stems estimated to be $\mathbf{6 . 7 6 9 3}$ Million.

Stratum	Area in $\mathbf{K m}^{\mathbf{2}}$	Total GS $\left(\mathbf{M m}^{\mathbf{3}}\right)$	Unit volume $\left(\mathbf{m}^{3} / \mathrm{ha}\right)$	No. of Stems in Million	Stems/ ha in No's

Block	472.070	4.0993	86.837	6.7417	142
Linear	2.166	0.0306	140.925	0.0276	127
Total	$\mathbf{4 7 4 . 2 3 6}$	$\mathbf{4 . 1 2 9 9}$		$\mathbf{6 . 7 6 9 3}$	

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \\ & \hline \end{aligned}$	Species name	Volume in Mm 3	$\begin{gathered} \hline \text { S. } \\ \text { No } \\ \hline \end{gathered}$	Species name	No. of Stems (Million)
1	Mangifera indica	3.7508	1	Mangifera indica	5.7092
2	Elaeis guineensis	0.0850	2	Elaeis guineensis	0.2508
3	Azadirachta Indica	0.0598	3	Tectona grandis	0.2141
4	Borassus flabellifer	0.0499	4	Azadirachta Indica	0.2010
5	Borassus flabellisformis	0.0449	5	Eucalyptus camaldulensis	0.0516
6	Eucalyptus tereticomis	0.0310	6	Borassus flabellifer	0.0477
7	Tectona grandis	0.0277	7	occidentale	0.0369
8	Samanea saman	0.0263	8	Borassus flabellisformis	0.0318
9	Bombax religiosum	0.0129		Eucalyptus	0.0318
10	Diospyros montana	0.0053	9	tereticomis	0.0295
			10	Samanea saman	0.0181

iii. Rural Habitations:

The total GS of this Stratum is estimated to be $6873.87 \mathrm{~m}^{3}$. Total number of stems estimated to be 11190. The unit volume (per ha) is $\mathbf{9 . 1 7 7}$ m^{3} and stems per ha are 15.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \\ & \hline \end{aligned}$	Species name	Volume in m^{3}	$\begin{aligned} & \text { S. } \\ & \text { No } \\ & \hline \end{aligned}$	Species name	No. of Stems
1	Tamarindus Indica	2115.23	1	Azadirachta Indica	3142
2	Azadirachta Indica	1745.15	2	Tamarindus Indica	2300
3	Ficus religiosa	583.52	3	Tectona grandis	777
4	Borassus flabellifer	269.71	4	Leucaena leucocephala	507
5	Borassus flabellisformis	253.98	5	Borassus flabellifer	486
6	Pongamia pinnata	234.7	6	Borassus flabellisformis	421
7	Mangifera indica	201.36	7	Mangifera indica	356

8	Syzygium cumini	152.83	8	Pongamia pinnata	345
9	Tectona grandis	149.73	9	Pithacolobium dulce	259
10	Helecteres isora	92.86	10	Grewia rothi	259

iv. Urban Habitations:

The total GS of this Stratum is estimated to be $\mathbf{3 2 5 9 . 6 5 9} \mathrm{m}^{3}$. Total number of stems estimated to be 4320. The unit volume (per ha) is $\mathbf{1 2 . 3 0 1}$ m^{3} and stems per ha are 16.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in m^{3}	$\begin{aligned} & \hline \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems
1	Azadirachta Indica	1307.10	1	Azadirachta Indica	1247
2	Tectona grandis	362.67	2	Mangifera indica	551
3	Mangifera indica	306.07	3	Tectona grandis	374
4	Pongamia pinnata	258.36	4	Pongamia pinnata	274
5	Ficus religiosa	224.20	5	Grewia rothi	268
6	Albizia lebbeck	200.56	6	Cocos nucifera	215
7	Tamarindus Indica	112.05	7	Tamarindus Indica	200
8	Syzygium cumini	97.11	8	Annona squamosa	135
9	Cocos nucifera	70.41	9	Syzygium cumini	97
10	Pithacolobium dulce	25.49	10	Borassus flabellifer	79

v. Scattered Trees:

The total GS of this Stratum is estimated to be $\mathbf{0 . 1 3 6 6} \mathbf{M m}^{3}$. Total number of stems estimated to be $\mathbf{0 . 1 4 5 2}$ Million. The unit volume (per ha) is $\mathbf{6 . 7 1 2} \mathrm{m}^{3}$ and stems per ha are $\mathbf{7}$.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \hline \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems
1	Borassus flabellisformis	0.0380	1	Borassus flabellisformis	54070
2	Madhuca Indica	0.0297	2	Bombax religiosum	26281
3	Bombax religiosum	0.0186	3	Borassus flabellifer	12710
4	Borassus flabellifer	0.0093	4	Azadirachta Indica	10771
5	Azadirachta Indica	0.0090	5	Madhuca Indica	4524

6	Ficus benghalensis	0.0084	6	Acacia nilotica	3339
7	Tamarindus Indica	0.0070	7	Tamarindus Indica	3231
8	Sapindus emarginatus	0.0024	8	Mollugu disticha	2693
9	Mangifera indica	0.0024	9	Sapindus emarginatus	2262
10	Mollugu disticha	0.0015	10	Grewia tiliaefolia	1831

4.3.3. OTHER FINDINGS:

a. Roads having Potential for taking up plantations:

i. National High Way: NH 365 is passing through this district with a length of $\mathbf{2 4 . 3} \mathbf{~ k m}$. However, it is observed that only $\mathbf{3 . 2}$ km length is covered with trees along the road, which comes only to 13.17% of the NH. Balance 21.1 km length of road network is devoid of Avenue Plantation; where planting could be taken up if found to be free from encroachments and encumbrances, in a phased manner.
ii. State High Way: The length of the state highway is 553.7 km, out of which only 49.8 km length is covered with the trees along the road, which comes to 8.99\% of SH. Balance 503.9 km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
iii. Other Roads: The length of these roads is 14476 km, out of which only 504 km length is with the trees, which comes to 3.48% of other road network. Balance 13972 km length could be taken up for planting if free found to be from encroachments and encumbrances, in a phased manner.
b. Railway Tracks having Potential for taking up plantations: The length of the railway track is estimated as 90 km; however, only $\mathbf{3 . 2}$ km length is covered trees, which comes to 3.56% of the length of the railway track. Balance $\mathbf{8 6 . 8}$ km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
c. Canals: The length of the canals is estimated as 341.7 km ; however, only 3.73 km length is covered trees, which comes to 1.09% of the length of the canals. There is good scope for taking up planting along the canals, if suitable.
d. Streams/ Rivers: The length of the streams/ rivers is estimated as 3951 km; however, only 59.4 km length is covered trees, which comes to 1.50% of the length of the canals. There is good scope for taking up planting, if suitable.

4.4 MAHABUBNGAR DISTRICT

4.4.1 Introduction:

The Mahabubnagar district is located in Southern west part of Telangana. The total geographical area of the district is $\mathbf{1 8 4 3 2} \mathrm{km}^{2}$, out of this notified forest area is $\mathbf{3 0 4 2 . 8 5} \mathrm{km}^{2}$. There are one territorial forest division and one wildlife management division in the district. The District has Amrabad Tiger Reserve with an area of $2166.37 \mathrm{~km}^{2}$

4.4.2 Assessment of resources under Trees Outside notified Forests:

A. TREE COVER:

Extent of tree cover under various classes is $\mathbf{8 2 3 . 8 8} \mathrm{km}^{2}$, which comes to 4.47\% of the geographical area and details as follows:

Natural Forests	-	$\mathbf{9 8 . 2 8}$	$\mathbf{k m}^{2}$
Plantations	-	$\mathbf{2 3 1 . 7 9}$	$\mathbf{k m}^{2}$
Rural Habitations	-	$\mathbf{9 . 3 1}$	$\mathbf{k m}^{2}$
Urban Habitations	-	$\mathbf{2 . 2 7}$	$\mathbf{k m}^{2}$
Scattered Trees	-	$\mathbf{4 8 2 . 2 3}$	$\mathbf{k m}^{\mathbf{2}}$

The natural forests, plantations and habitations constitute 11.93\%, $\mathbf{2 8 . 1 3 \%}$ and $\mathbf{5 9 . 9 4 \%}$ of the total ToF Area respectively.

The stratum wise points and extent of area shown below:

S.No	Stratum	Sub stratum	$\begin{aligned} & \text { Canopy } \\ & \text { Class } \end{aligned}$	No. of sample plots	Area in $K^{2}{ }^{2}$
1	Natural Forests	Block	MDF	0	0
			OF	20	22.95
			Scrub	70	69.61
		Linear		32	5.72
		Total			98.28
2	Plantations	Block		60	228.05
		Linear		28	3.74
		Total			231.79
3	Habitations	Rural		60	9.31

		Urban		46	2.27
		Total			$\mathbf{1 1 . 5 8}$
4	Scattered Trees			63	482.23
		Grand Total	$\mathbf{3 7 9}$	$\mathbf{8 2 3 . 8 8}$	

Distribution of TOF points in the district

B. GROWING STOCK AND NUMBER OF STEMS:

Overall Growing stock is estimated to be $\mathbf{2 . 2 9 2 9} \mathrm{Mm}^{3}$. Breakup is as follows:

- Natural Forests
- $0.5628 \mathrm{Mm}^{3}$
- Plantations
- $1.5026 \mathrm{Mm}^{3}$
- Rural Habitations
- $0.0277 \mathrm{Mm}^{3}$
- Urban Habitations
- $0.0033 \mathrm{Mm}^{3}$
- Scattered Trees
- 0.1965 Million

Number of Stems is 2.4554 Million. Breakup is as follows:

- Natural Forests
- 0.7254 Million
- Plantations
- 1.5925Million
- Rural Habitations
- 0.0107Million
- Urban Habitations
- 0.0028 Million
- Scattered Trees
- 0.1240 Million

C. THE STRATUM WISE DETAILS ARE AS FOLLOWS:

i. Natural forests:

The total GS of this Stratum is estimated to be $\mathbf{0 . 4 5 0 8} \mathrm{Mm}^{3}$. Total number of stems estimated to be $\mathbf{1 . 6 5 7 9}$ Million.

S.no	Sub Stratum	Class	$\begin{aligned} & \text { Area in } \\ & \mathbf{K m}^{2} \end{aligned}$	$\begin{aligned} & \text { Total GS } \\ & \left(\mathrm{Mm}^{3}\right) \end{aligned}$	Unit volume ($\mathrm{m}^{3} / \mathrm{ha}$)	No. of Stems in Million	Stems/ ha in No's
1		MDF	0.00	0.00	0.00	0.00	0.00
2	Block	OF	22.954	0.1206	52.535	0.1572	68
3		Scrub	69.616	0.3242	46.576	0.4883	70
4	Linear		5.720	0.1180	206.000	0.0799	139
Total			98.280	0.5628		0.7254	

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems (Million)
1	Azadirachta Indica	0.1130	1	Albizia amara	0.1973
2	Holoptelea integrifolia	0.0659	2	Chloroxylon swietenia	0.0639
3	Albizia amara	0.0567	3	Azadirachta Indica	0.0564
4	Acacia nilotica	0.0507	4	Holoptelea integrifolia	0.0536
5	Butea monosperma	0.0443	5	Wrightia tinctoria	0.0431
6	Phoenix sylvestris	0.0345	6	Phoenix sylvestris	0.0422
7	Tamarindus Indica	0.0297	7	Acacia nilotica	0.0338
8	Pongamia pinnata	0.0289	8	Pongamia pinnata	
9	Wrightia tinctoria	0.0205		Pongamia pinnata	0.0196
	Dalbergia		9	Butea monosperma	0.0178
10	paniculata	0.0188	10	Leucaena leucocephala	0.0172

ii. Plantations

The total GS of this Stratum is estimated to be $\mathbf{1 . 5 0 2 6} \mathrm{Mm}^{3}$. Total number of stems estimated to be $\mathbf{1 . 5 6 2 5}$ Million.

Stratum	Area in $\mathrm{Km}^{\mathbf{2}}$	Total GS $\left(\mathrm{Mm}^{\mathbf{3}}\right)$	Unit volume $\left(\mathrm{m}^{\mathbf{3}} / \mathrm{ha}\right)$	No. of Stems in Million	Stems/ ha in No's

Block	22.804	1.4006	61.415	1.5431	67
Linear	3.740	0.1020	272.863	0.0494	132
Total	26.544	$\mathbf{1 . 5 0 2 6}$		$\mathbf{1 . 5 9 2 5}$	

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \\ & \hline \end{aligned}$	Species name	Volume in $\mathbf{M m}^{\mathbf{3}}$	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems (Million)
1	Mangifera indica	0.7693	1	Mangifera indica	1.0343
2	Tectona grandis	0.3158	2	Tectona grandis	0.2141
3	Azadirachta Indica	0.1067	3	Citrus Pseudolimon	0.1710
4	Citrus Pseudolimon	0.0965	4	Azadirachta Indica	0.0657
5	Butea monosperma	0.0772	5	Pongamia pinnata	0.0180
6	Ficus racemosa	0.0270	6	Butea monosperma	0.0122
7	Eucalyptus tereticomis	0.0262	7	Eucalyptus tereticomis	0.0114
8	Pongamia pinnata	0.0191	8	Cocos nucifera	0.0077
	Peltophorum		9	Acacia planifrons	0.0077
9	pterocarpum	0.0141	10	Phoenix sylvestris	0.0077
10	Tamarindus Indica	0.0103			

iii. Rural Habitations:

The total GS of this Stratum is estimated to be $\mathbf{2 7 7 0 6 . 1 9} \mathrm{m}^{3}$. Total number of stems estimated to be 10748. The unit volume (per ha) is $29.760 \mathrm{~m}^{3}$ and stems per ha are 11.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \hline \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in m 3	$\begin{array}{\|l\|} \hline \text { S. } \\ \text { No } \\ \hline \end{array}$	Species name	No. of Stems
1	Azadirachta Indica	19092.73	1	Azadirachta Indica	4500
2	Pongamia pinnata	1392.72	2	Pongamia pinnata	1077
3	Cocos nucifera	1184.05	3	Cocos nucifera	962
4	Tamarindus Indica	954.96	4	Acacia nilotica	635
5	Holoptelea integrifolia	716.37	5	Leucaena leucocephala	596
6	Eucalyptus tereticomis	530.17	6	Holoptelea integrifolia	346
7	Leucaena	451.76	7	Grewia rothi	346

	Ieucocephala		8	Prosopis juliflora	288
8	Saraca asoka	417.03	9	Tamarindus Indica	269
9	Mangifera indica	403.33	10	Saraca asoka	269
10	Acacia nilotica	381.43			

iv. Urban Habitations:

The total GS of this Stratum is estimated to be $\mathbf{3 2 6 4 . 5 3 3} \mathrm{m}^{3}$. Total number of stems estimated to be $\mathbf{4 3 2 0}$. The unit volume (per ha) is $\mathbf{1 4 . 9 8 1}$ m^{3} and stems per ha are 14.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in m^{3}	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems
1	Azadirachta Indica	1139.13	1	Azadirachta Indica	703
2	Pongamia pinnata	344.95	2	Cocos nucifera	415
3	Cocos nucifera	301.18	3	Pongamia pinnata	326
4	Tectona grandis	284.27	4	Tectona grandis	253
5	Ficus religiosa	190.50	5	Prunus dulcis	154
6	Prunus dulcis	78.50	6	Syzygium cumini	115
7	Holoptelea integrifolia	74.07	7	Mangifera indica	77
8	Dalbergia sissoo	74.07 73.34	8	Holoptelea integrifolia	58
9 10	Madhuca Indica	72.25	9	Leucaena leucocephala	58
10	Peltophorum pterocarpum	68.88	10	Acacia nilotica	58

v. Scattered Trees:

The total GS of this Stratum is estimated to be $\mathbf{0 . 1 9 6 5} \mathbf{M m}^{3}$. Total number of stems estimated to be $\mathbf{0 . 1 2 4 0}$ Million. The unit volume (per ha) is $\mathbf{4 . 0 7 5} \mathrm{m}^{3}$ and stems per ha are $\mathbf{2 . 5 7}$.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems
1	Azadirachta Indica	0.0682	1	Azadirachta Indica	30006
2	Peltophorum		2	Acacia nilotica	11520
	pterocarpum	0.0214	3	Mangifera indica	9109
3	Phoenix sylvestris	0.0153			

4	Acacia nilotica	0.0150	4	Phoenix sylvestris	8305
5	Melia azedarach	0.0111	5	Albizia amara	6698
6	Butea monosperma	0.0076	6	Butea monosperma	6162
7	Wrightia tinctoria	0.0068	7	Borassus flabellifer	4822
8	Tamarindus Indica	0.0059	8	Prosopis spicigera	4287
9	Holoptelea integrifolia	0.0050	9	Holoptelea integrifolia	3751
10	Tectona grandis	0.0050	10	Wrightia tinctoria	3215

4.4.3. OTHER FINDINGS:

a. Roads having Potential for taking up plantations:
i. National High Way: NH 44 is passing through this district with a length of $\mathbf{1 6 2}$ km. However, it is observed that only 1.9 km length is covered with trees along the road, which comes only to 1.17% of the NH. Balance $\mathbf{1 6 0 . 1}$ km length of road network is devoid of Avenue Plantation; where planting could be taken up if found to be free from encroachments and encumbrances, in a phased manner.
ii. State High Way: The length of the state highway is $\mathbf{7 1 4 . 7}$ km, out of which only 33.3 km length is covered with the trees along the road, which comes to 4.66% of SH. Balance 681.4 km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
iii. Other Roads: The length of these roads is 27582 km, out of which only 1314 km length is with the trees, which comes to 4.76% of other road network. Balance 26268 km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
b. Railway Tracks having Potential for taking up plantations: The length of the railway track is estimated as $\mathbf{2 0 7}$ km; however, only $\mathbf{1 . 6}$ km length is covered trees, which comes to 0.77% of the length of the railway track. Balance 205.4 km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
c. Canals: The length of the canals is estimated as 114.6 km ; however, only $\mathbf{0 . 1} \mathrm{km}$ length is covered trees, which comes to 0.09% of the length of the canals. There is good scope for taking up planting along the canals, if suitable.
d. Streams/ Rivers: The length of the streams/ rivers is estimated as 1454.9 km ; however, only 10.5 km length is covered trees, which comes to 0.75% of the length of the canals. There is good scope for taking up planting, if suitable.

4.5 MEDAK DISTRICT

4.5.1 Introduction:

The Medak district is located in Central west part of Telangana. The total geographical area of the district is $\mathbf{9 7 1 0 . 5 6} \mathrm{km}^{2}$, out of this notified forest area is $963.12 \mathrm{~km}^{2}$. There are one territorial forest division and one wildlife management division in the district.

4.5.2 Assessment of resources under Trees Outside notified Forests:

A. TREE COVER:

Extent of tree cover under various classes is $\mathbf{8 1 7 . 5 3} \mathrm{km}^{2}$, which comes to 8.42% of the geographical area and details as follows:

Natural Forests	-	$\mathbf{5 0 0 . 0 6}$	$\mathbf{k m}^{\mathbf{2}}$
Plantations (Block and Linear)	-	$\mathbf{4 9 . 3 9}$	$\mathbf{k m}^{\mathbf{2}}$
Rural Habitations	-	$\mathbf{6 . 2 8}$	$\mathbf{k m}^{\mathbf{2}}$
Urban Habitations	-	$\mathbf{2 . 1 3}$	$\mathbf{k m}^{\mathbf{2}}$
Scattered Trees	-	$\mathbf{2 5 9 . 6 7}$	$\mathbf{k m}^{\mathbf{2}}$

The natural forests, plantations and habitations constitute 61.17\%, $\mathbf{6 . 0 4 \%}$ and $\mathbf{3 2 . 7 9 \%}$ of the total ToF Area respectively.

The stratum wise points and extent of area shown below:

S.No	Stratum	Sub stratum	Canopy Class	No. of sample plots	Area in $\mathbf{K m}^{2}$
1	Natural Forests	Block	MDF	0	3.55
			OF	67	71.94
			Scrub	388	381.11
		Linear		45	43.46
		Total			500.06
2	Plantations	Block		60	44.69
		Linear		15	4.7
		Total			49.39
3	Habitations	Rural		60	6.28

		Urban		49	2.13
		Total		$\mathbf{8 . 4 1}$	
4	Scattered Trees			60	259.67
		Grand Total	$\mathbf{7 4 4}$	$\mathbf{8 1 7 . 5 3}$	

Distribution of TOF points in the district

B. GROWING STOCK AND NUMBER OF STEMS:

Overall Growing stock is estimated to be $\mathbf{2 . 0 3 2 4} \mathrm{Mm}^{3}$. Breakup is as follows:

- Natural Forests
- 1.4782 Mm 3
- Plantations
- $0.4931 \mathrm{Mm}^{3}$
- Rural Habitations
$-0.0017 \mathrm{Mm}^{3}$
- Urban Habitations
- $0.0009 \mathrm{Mm}^{3}$
- Scattered Trees
$-0.0585 \mathrm{Mm}^{3}$

Number of Stems is estimated to be 3.6781 Million. Breakup is as follows:

- Natural Forests
- Plantations
- Rural Habitations
- Urban Habitations
- Scattered Trees
- 2.9822Million
- 0.5974Million
- 0.0021 Million
- 0.0009 Million
- 0.0955 Million

c. The stratum wise details are as follows:

i. Natural forests:

The total GS of this Stratum is estimated to be $\mathbf{1 . 4 7 8} \mathrm{Mm}^{3}$. Total number of stems estimated to be $\mathbf{2 . 9 8 2}$ Million.

S.no	Sub Stratum	Class	Area in $\mathbf{K m}{ }^{2}$	$\begin{gathered} \text { Total GS } \\ \left(\mathrm{Mm}^{3}\right) \end{gathered}$	Unit volume ($\mathrm{m}^{3} / \mathrm{ha}$)	No. of Stems in Million	Stems/ ha in No's
1	Block	MDF	0.00	0.00	0.00	0.00	0
2		OF	75.499	0.561	74.346	1.347	178
3		Scrub	381.105	0.679	17.820	1.332	35
4	Linear		43.464	0.238	54.762	0.303	70
Total			500.068	1.478		2.982	

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \hline \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems (Million)
1	Butea monosperma	0.2701	1	Azadirachta Indica	0.5799
2	Azadirachta Indica	0.2390	2	Butea monosperma	0.2721
3	Tamarindus Indica	0.1319	3	Tectona grandis	0.2595
4	Madhuca Indica	0.0997	4	Mangifera indica	0.2523
5	Mangifera indica	0.0803	5	Others(Unknown)	0.1124
6	Tectona grandis	0.0697	6	Albizia amara	0.1080
	Borassus		7	Phoenix sylvestris	0.0928
7	flabellisformis	0.0689	8	Pongamia pinnata	0.0917
8	Eucalyptus tereticomis	0.0510	9	Acacia nilotica	0.0839
9	Phoenix Loureirri	0.0429	10	Tamarindus indica	0.0822
10	Ficus benghalensis	0.0385			

ii. Plantations:

The total GS of this Stratum is estimated to be $\mathbf{0 . 4 9 3} \mathrm{Mm}^{3}$. Total number of stems estimated to be $\mathbf{0 . 5 9 7}$ Million.

Stratum	Area in $\mathbf{K m}^{\mathbf{2}}$	Total GS $\mathbf{(M m}^{\mathbf{3}} \mathbf{)}$	Unit volume $\mathbf{(m}^{\mathbf{3} / h a)}$	No. of Stems in Million	Stems/ ha in No's
Block	443692	0.467	104.490	0.576	128

Linear	4.704	0.026	55.392	0.021	108
Total	448.396	$\mathbf{0 . 4 9 3}$		$\mathbf{0 . 5 9 7}$	

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
S. No	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{aligned} & \hline \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems (Million)
1	Syzygium jambos	0.1766	1	Mangifera indica	0.3993
2	Mangifera indica	0.1423	2	Peltophorum pterocarpum	0.0390
3	Peltophorum pterocarpum	0.0422	3	pterocarpum	0.0390
4	Tectona grandis	0.0256	4	Azadirachta Indica	0.0256
5	Ficus benghalensis	0.0215	5	Grewia rothi	0.0149
6	Cocos nucifera	0.0203	6	Cocos nucifera	0.0119
7	Ficus religiosa	0.0191	7	Cassia siamea	0.0119
8	Cassia siamea	0.0168	8	Syzygium jambos	0.0112
9	Azadirachta Indica	0.0143	9	Ficus religiosa	0.0104
10	Dalbergia sissoo	0.0035	10	Dalbergia sissoo	0.0065

iii. Rural Habitations:

The total GS of this Stratum is estimated to be $\mathbf{1 6 9 1 . 8 6 \mathrm { m } ^ { 3 } \text { . Total }}$ number of stems estimated to be 2090.66. The unit volume (per ha) is $2.694 \mathrm{~m}^{3}$ and stems per ha are 3.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in m^{3}	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems
1	Azadirachta Indica	19092.73	1	Azadirachta Indica	4500
2	Pongamia pinnata	1392.72	2	Pongamia pinnata	1077
3	Cocos nucifera	1184.05	3	Cocos nucifera	962
4	Tamarindus Indica	954.96	4	Acacia nilotica	635
5	Holoptelea integrifolia	716.37	5	Leucaena leucocephala	596
6	Eucalyptus tereticomis	530.17	6	Holoptelea integrifolia	346
7	Leucaena		7	Grewia rothi	346
	leucocephala	451.76	8	Prosopis juliflora	288
8	Saraca asoka	417.03	9	Tamarindus Indica	269
9	Mangifera indica	403.33	10	Saraca asoka	269

iv. Urban Habitations:

The total GS of this Stratum is estimated to be $\mathbf{9 2 0 . 8 7 8} \mathrm{m}^{3}$. Total number of stems estimated to be $\mathbf{9 4 7}$. The unit volume (per ha) is $\mathbf{4 . 3 4 2} \mathrm{m}^{3}$ and stems per ha are 4.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in m^{3}	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems
1	Azadirachta Indica	1139.13	1	Azadirachta Indica	703
2	Pongamia pinnata	344.95	2	Cocos nucifera	415
3	Cocos nucifera	301.18	3	Pongamia pinnata	326
4	Tectona grandis	284.27	4	Tectona grandis	253
5	Ficus religiosa	190.50	5	Prunus dulcis	154
6	Prunus dulcis	78.50	6	Syzygium cumini	115
7	Holoptelea		7	Mangifera indica	77
	integrifolia	74.07	8	Azadirachta Indica	703
8	Dalbergia sissoo	73.34	9	Cocos nucifera	415
9	Madhuca Indica	72.25	10	Pongamia pinnata	326
10	Peltophorum pterocarpum	68.88			

v. Scattered Trees:

The total GS of this Stratum is estimated to be $\mathbf{0 . 0 5 8 5} \mathbf{M m}^{3}$. Total number of stems estimated to be $\mathbf{0 . 0 9 5 5}$ Million. The unit volume (per ha) is $\mathbf{2 . 2 5 4} \mathrm{m}^{3}$ and stems per ha are 4.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{gathered} \hline \text { S. } \\ \text { No } \end{gathered}$	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{gathered} \hline \text { S. } \\ \text { No } \end{gathered}$	Species name	No. of Stems
1	Madhuca indica	0.0969	1	Azadirachta Indica	33613
2	Azadirachta indica	0.0293	2	Butea	
3	Borassus			monosperma	18177
	flabelliformis	0.0244	3	Acacia nilotica	7502
4	Butea monospema	0.0184	4	Tamarindus Indica	5482
5	Tectona grandis	0.0099	5	Mangifera indica	4905

6	Delonix regia	0.0085	6	Pongamia pinnata	3318
7	Mangifera indica	0.0073	7	Ficus	
8	Ficus racemosa	0.0057		benghalensis	2164
9	Ficus religiosa	0.0052	8	Ficus religiosa	1731
10	Ficus mollis	0.0045	9	Lagerstroemia parviflora	1443
			10	Madhuca indica	1298

4.5.3. OTHER FINDINGS:

a. Roads having Potential for taking up plantations:

i. National High Way: NH 44 and 65 are passing through this district with a length of $\mathbf{1 7 8 . 3} \mathbf{~ k m}$. However, it is observed that only 28.6 km length is covered with trees along the road, which comes only to 16.04% of the NH. Balance 149.1 km length of road network is devoid of Avenue Plantation; where planting could be taken up if found to be free from encroachments and encumbrances, in a phased manner.
ii. State High Way: The length of the state highway is $\mathbf{3 5 4 . 5}$ km, out of which only $\mathbf{1 2 0 . 7}$ km length is covered with the trees along the road, which comes to 34.05\% of SH. Balance 233.8 km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
iii. Other Roads: The length of these roads is 16089 km , out of which only 1872 km length is with the trees, which comes to 11.64% of other road network. Balance $\mathbf{1 4 2 1 7}$ km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
b. Railway Tracks having Potential for taking up plantations: The length of the railway track is estimated as $\mathbf{1 1 8 . 5} \mathbf{~ k m}$; however, only 13.4 km length is covered trees, which comes to 11.31% of the length of the railway track. Balance $\mathbf{1 0 5 . 1} \mathbf{k m}$ length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
c. Canals: The length of the canals is estimated as 52.2 km ; however, only 1.6 km length is covered trees, which comes to 3.07% of the length of the canals. There is good scope for taking up planting along the canals, if suitable.
d. Streams/ Rivers: The length of the streams/ rivers is estimated as 203.9 km; however, only 1.7 km length is covered trees, which
comes to 0.83% of the length of the canals. There is good scope for taking up planting, if suitable.

4.6 NALGONDA DISTRICT

4.6.1 Introduction:

The Nalogonda district is located in southern east part of Telangana. The total geographical area of the district is $\mathbf{7 7 1 8 . 5 2} \mathrm{km}^{2}$, out of this notified forest area is $\mathbf{7 5 8 . 8 7} \mathrm{km}^{2}$. There are one territorial forest division and one wildlife management division (Nagarjunasagar WLM division, part of Amrabad Tiger Reserve with an area of $\mathbf{3 8 6 . 6 4} \mathrm{km}^{2}$) in the district.

4.6.2 Assessment of resources under Trees Outside notified

Forests:

A. TREE COVER:

Extent of tree cover under various classes is $\mathbf{1 0 6 7 . 9 8} \mathrm{km}^{2}$, which comes to 13.84% of the geographical area and details as follows:

Natural Forests	-	98.34	$\mathbf{k m}^{\mathbf{2}}$
Plantations (Block and Linear)	-	554.55	$\mathbf{k m}^{\mathbf{2}}$
Rural Habitations	-	$\mathbf{9 . 9 2}$	$\mathbf{k m}^{\mathbf{2}}$
Urban Habitations	-	$\mathbf{2 . 5 7}$	$\mathbf{k m}^{\mathbf{2}}$
Scattered Trees	-	$\mathbf{4 0 2 . 6}$	$\mathbf{k m}^{\mathbf{2}}$

The natural forests, plantations and habitations constitute 9.21\%, $\mathbf{5 1 . 9 3 \%}$ and $\mathbf{3 8 . 8 7 \%}$ of the total ToF Area respectively.

The stratum wise points and extent of area shown below:

S.No	Stratum	Sub stratum	Canopy Class	No. of sample plots	Area in $K^{2}{ }^{2}$
1	Natural Forests	Block	MDF	0	0.046
			OF	15	16.17
			Scrub	65	72.37
		Linear		14	9.75
		Total			98.34
2	Plantations	Block		80	545.41
		Linear		66	9.14
		Total			554.55
3	Habitations	Rural		60	9.92

		Urban		80	2.57
		Total			$\mathbf{1 2 . 4 9}$
4	Scattered Trees			80	402.6
		Grand Total		$\mathbf{4 6 0}$	$\mathbf{1 0 6 7 . 9 8}$

Distribution of TOF points in the district

B. GROWING STOCK AND NUMBER OF STEMS:

Overall Growing stock is estimated to be $\mathbf{2 . 0 4 8 7} \mathrm{Mm}^{3}$. Breakup is as follows:

- Natural Forests
- Plantations
- Rural Habitations
- Urban Habitations
- Scattered Trees

Number of Stems is $\mathbf{5 . 5 8 8 2}$ Million. Breakup is as follows:

- Natural Forests
- Plantations
- Rural Habitations
- Urban Habitations
- Scattered Trees

c. The stratum wise details are as follows:

i. Natural forests:

The total GS of this Stratum is estimated to be $\mathbf{0 . 3 7 2} \mathrm{Mm}^{3}$. Total number of stems is estimated to be $\mathbf{1 . 1 7 3}$ Million.

S.no	Sub Stratum	Class	Area in $K^{2}{ }^{2}$	$\begin{gathered} \text { Total GS } \\ \left(\mathrm{Mm}^{3}\right) \end{gathered}$	Unit volume ($\mathrm{m}^{3} / \mathrm{ha}$)	No. of Stems in Million	Stems/ ha in No's
1	Block	MDF	0.004	0.000	0.00	0.000	0
2		OF	16.174	0.094	58.060	0.210	130
3		Scrub	72.367	0.219	30.231	0.794	109
4	Linear		9.746	0.059	60.783	0.169	173
Total			98.291	0.372		1. 173	

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \hline \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in Mm 3	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems (Million)
1	Azadirachta Indica	0.1321	1	Azadirachta Indica	0.1921
2	Bombax religiosum	0.0461	2	Prosopis juliflora	0.1703
3	Prosopis juliflora	0.0380	3	Acacia nilotica	0.1539
4	Acacia nilotica	0.0345	4	Bombax religiosum	0.1177
5	Phoenix sylvestris	0.0164	5	Albizia amara	0.1131
6	Butea monosperma	0.0139	6	Grewia rotundifolia	0.0534
7	Mundulea suberosa	0.0099	7	Phoenix sylvestris	0.0489
8	Tamarindus Indica	0.0096	8	Butea monosperma	0.0392
9	Ficus benghalensis	0.0094	9	Mundulea suberosa	0.0334
10	Albizia lebbeck	0.0076	10	Albizia procera	0.0329

ii. Plantations

The total GS of this Stratum is estimated to be $\mathbf{1 . 5 7 6} \mathrm{Mm}^{3}$. Total number of stems estimated to be $\mathbf{4 . 2 2 0}$ Million.

Stratum	Area in $\mathbf{K m}^{\mathbf{2}}$	Total GS $\mathbf{(M m}^{\mathbf{3}} \mathbf{)}$	Unit volume $\mathbf{(m}^{\mathbf{3} / \mathbf{h a)}}$	No. of Stems in Million	Stems/ ha in No's
Block	545.411	1.477	27.086	4.117	75
Linear	9.143	0.099	108.560	0.103	112
Total	554.554	$\mathbf{1 . 5 7 6}$		$\mathbf{4 . 2 2 0}$	

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{gathered} \hline \text { S. } \\ \text { No } \end{gathered}$	Species name	No. of Stems (Million)
1	Azadirachta Indica	0.7771	1	Azadirachta Indica	0.7739
2	Bombax religiosum	0.2703	2	Bombax religiosum	0.7226
3	Citrus limon	0.1657	3	Citrus Pseudolimon	0.6340
4	Mangifera indica	0.0995	4	Citrus limon	0.5659
5	Acacia nilotica	0.0509	5	Mangifera indica	0.4024
6	Citrus Pseudolimon	0.0492	6	Tectona grandis	0.3692
7	Tectona grandis	0.0398	7	Acacia nilotica	0.2247
8	Cocos nucifera	0.0242	8	Cocos nucifera	0.0886
9	Zizyphus		9	Prosopis juliflora	0.0836
10	mauritiana	0.0163 0.0130	10	Zizyphus mauritiana	0.0682

iii. Rural Habitations:

 number of stems estimated to be 2090.66. The unit volume (per ha) is $\mathbf{1 1}$ m^{3} and stems per ha are 11.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in \mathbf{m}^{3}	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems
1	Azadirachta Indica	4473.13	1	Azadirachta Indica	4405
2	Cocos nucifera	1212.90	2	Cocos nucifera	1776
3	Tamarindus Indica	411.84	3	Prosopis juliflora	697
4	Syzygium cumini	167.00	4	Leucaena leucocephala	669
5	Albizia lebbeck	147.74	5	Tamarindus Indica	608
6	Pongamia pinnata	124.57	6	Grewia rothi	355
7	Acacia nilotica	112.12	7	Pongamia pinnata	294
8	Acacia leucophloea	106.48	8	Tectona grandis	294
9	Ficus mollis	104.30	9		
10	Prosopis juliflora	98.19	10	Acacia nilotica	253

iv. Urban Habitations:

The total GS of this Stratum is estimated to be $\mathbf{2 3 6 8 . 3 1 7} \mathrm{m}^{3}$. Total number of stems estimated to be $\mathbf{3 6 8 5}$. The unit volume (per ha) $9.215 \mathrm{~m}^{3}$ and stems per ha are 14

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in m^{3}	S.	Species name	No. of Stems
1	Azadirachta Indica	1161.64	1	Azadirachta Indica	1311
2	Cocos nucifera	195.63	2	Cocos nucifera	509
3	Pongamia pinnata	151.34	3	Pongamia pinnata	294
4	Mangifera indica	112.24	4	Tectona grandis	215
5	Delonix regia	102.77	5	Grewia rothi	142
6	Azadirachta Indica	1161.64	6	Azadirachta Indica	1311
7	Cocos nucifera	195.63	7	Cocos nucifera	509
8	Pongamia pinnata	151.34	8	Pongamia pinnata	294
9	Mangifera indica	112.24	9	Tectona grandis	215
10	Delonix regia	102.77	10	Grewia rothi	142

v. Scattered Trees:

The total GS of this Stratum is estimated to be $\mathbf{0 . 0 1 6} \mathbf{M m}^{3}$. Total number of stems estimated to be $\mathbf{0 . 0 1 1}$ Million. The unit volume (per ha) is $8.918 \mathrm{~m}^{3}$ and stems per ha are 6.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \hline \text { S. } \\ & \text { No } \\ & \hline \end{aligned}$	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems
1	Azadirachta Indica	0.0211	1	Azadirachta Indica	1311
2	Bombax religiosum	0.0384	2	Cocos nucifera	509
3	Acacia nilotica	0.0042	3	Pongamia pinnata	294
4	Mangifera indica	0.0078	4	Tectona grandis	215
5	Citrus limon	0.0008	5	Grewia rothi	142
6	Tamarindus Indica	0.0031	6	Mangifera indica	124
7	Acacia chundra	0.0045	7	Tamarindus Indica	105
8	Albizia lebbeck	0.0007	8	Acacia nilotica	104
9	Ficus mollis	0.0019	9	Saraca asoka	92
10	Tectona grandis	0.0001	10	Leucaena leucocephala	75

4.6.3 OTHER FINDINGS:

a. Roads having Potential for taking up plantations:

i. National High Way: NH 65 are passing through this district with a length of 201 km. However, it is observed that only 23.9 km length is covered with trees along the road, which comes only to 11.89% of the NH. Balance $\mathbf{1 7 7 . 1}$ km length of road network is devoid of Avenue Plantation; where planting could be taken up if found to be free from encroachments and encumbrances, in a phased manner.
ii. State High Way: The length of the state highway is $\mathbf{5 0 8 . 5}$ km, out of which only 52.9 km length is covered with the trees along the road, which comes to 10.40% of SH . Balance 455.6 km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
iii. Other Roads: The length of these roads is 24422 km , out of which only 1026 km length is with the trees, which comes to 4.20% of other road network. Balance 23396 km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
b. Railway Tracks having Potential for taking up plantations: The length of the railway track is estimated as 228.9 km ; however, only 2.6 km length is covered trees, which comes to 1.14% of the length of the railway track. Balance 226.3 km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
c. Canals: The length of the canals is estimated as 149 km ; however, only 4.2 km length is covered trees, which comes to 2.82% of the length of the canals. There is good scope for taking up planting along the canals, if suitable.
d. Streams/ Rivers: The length of the streams/ rivers is estimated as 1459.9 km ; however, only 10.5 km length is covered trees, which comes to 0.72% of the length of the canals. There is good scope for taking up planting, if suitable.

4.7 NIZAMABAD DISTRICT

4.7.1 Introduction:

The Nizmabad district is located in Northern west part of Telangana. The total geographical area of the district is $7968.35 \mathrm{~km}^{2}$, out of this notified forest area is $\mathbf{1 7 6 8 . 4 2} \mathrm{km}^{2}$. There are two (2) forest divisions in the district.

4.7.2 Assessment of resources under Trees Outside notified Forests:

A. TREE COVER:

Extent of tree cover under various classes is $\mathbf{3 8 8 . 0 8} \mathrm{km}^{2}$, which comes to 4.87% of the geographical area and details as follows:

Natural Forests	-	$\mathbf{1 7 6 . 7 9}$	$\mathbf{k m}^{\mathbf{2}}$
Plantations (Block and Linear)	-	$\mathbf{1 4 . 8 2}$	$\mathbf{k m}^{\mathbf{2}}$
Rural Habitations	-	$\mathbf{5 . 6 1}$	$\mathbf{k m}^{\mathbf{2}}$
Urban Habitations	-	$\mathbf{2 . 0 4}$	$\mathbf{k m}^{\mathbf{2}}$
Scattered Trees	-	$\mathbf{1 8 8 . 8 2}$	$\mathbf{k m}^{\mathbf{2}}$

The natural forests, plantations and habitations constitute 45.55\%, $\mathbf{3 . 8 2} \%$ and $\mathbf{5 0 . 6 3 \%}$ of the total ToF Area respectively.

The stratum wise points and extent of area shown below:

S.No	Stratum	Sub stratum	Canopy Class	No. of sample plots	Area in $\mathbf{K m}^{2}$
1	Natural Forests	Block	MDF	15	14.256
			OF	65	47.66
			Scrub	120	105.87
		Linear		24	9.00
		Total			176.79
2	Plantations	Block		60	8.59
		Linear		36	6.23
		Total			14.82
3	Habitations	Rural		50	5.61

		Urban		48	2.04
		Total			$\mathbf{7 . 6 5}$
4	Scattered Trees			60	188.82
		Grand Total	$\mathbf{4 7 8}$	$\mathbf{3 8 8 . 0 8}$	

Distribution of TOF points in the district

B. GROWING STOCK AND NUMBER OF STEMS:

Overall Growing stock is estimated to be $\mathbf{1 . 7 2 5 4} \mathrm{Mm}^{3}$. Breakup is as follows:

- Natural Forests
- 1.4008 Mm 3
- Plantations
- $0.2950 \mathrm{Mm}^{3}$
- Rural Habitations
- 0.0119 Mm 3
- Urban Habitations
- 0.0009 Mm 3
- Scattered Trees
- 0.0168 Mm 3

Number of Stems is estimated to be 2.7461 Million. Breakup is as follows:

- Natural Forests
- Plantations
- Rural Habitations
- Urban Habitations
- Scattered Trees
- 2.4975 Million
- 0.2259 Million
- 0.0107 Million
- 0.0007 Million
- 0.0113 Million

C. THE STRATUM WISE DETAILS ARE AS FOLLOWS:

i. Natural forests:

The total GS of this Stratum is estimated to be $\mathbf{1 . 4 0 0 8} \mathrm{Mm}^{3}$. Total number of stems estimated to be $\mathbf{2 . 4 9 7 5}$ Million.

S.no	Sub Stratum	Class	Area in $\mathbf{K m}{ }^{2}$	Total GS (Mm^{3})	Unit volume ($\mathrm{m}^{3} / \mathrm{ha}$)	No. of Stems in Million	Stems/ ha in No's
1	Block	MDF	14.250	0.149	105.087	0.225	158
2		OF	47.661	0.286	60.046	0.777	163
3		Scrub	105.868	0.913	86.290	1.442	136
4	Linear		9.002	0.059	60.783	0.053	59
Total			176.781	1.407		2.497	

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \hline \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in Mm^{3}	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems (Million)
1	Azadirachta Indica	0.2494	1	Tectona grandis	0.4002
2	Butea monosperma	0.2209	2	Butea monosperma	0.2969
3	Mangifera indica	0.1449	3	Azadirachta Indica	0.2741
4	Lagerstroemia parviflora	0.0961	4	Lagerstroemia parviflora	0.2549
5	Phoenix sylvestris	0.0929	5	Mangifera indica	0.1921
6	Tectona grandis	0.0901	6	Acacia nilotica	0.1512
7	Madhuca Indica	0.0649	7	Holarrhena antidysenterica	0.0808
8	Semecarpus anacardium	0.0593	8	Chloroxylon swietenia	0.0808 0.0801
9	Acacia nilotica	0.0314	9		
10	Pongamia pinnata	0.0229	9	melanoxylon	0.0634
			10	Cassia fistula	0.0582

ii. Plantations

The total GS of this Stratum is estimated to be $\mathbf{0 . 2 9 5} \mathrm{Mm}^{3}$. Total number of stems estimated to be $\mathbf{0 . 2 2 6}$ Million.

Stratum	Area in $\mathbf{K m}^{\mathbf{2}}$	Total GS $\mathbf{(M m}^{\mathbf{3}} \mathbf{)}$	Unit volume $\mathbf{(m}^{\mathbf{3}} / \mathbf{h a)}$	No. of Stems in Million	Stems/ ha in No's
Block	8.590	0.176	204.485	0.166	193
Linear	6.236	0.119	191.327	0.060	96
Total	14.826	$\mathbf{0 . 2 9 5}$		$\mathbf{0 . 2 2 6}$	

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
S. No	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems (Million)
1	Mangifera indica	0.1967	1	Mangifera indica	0.1385
2	Azadirachta Indica	0.0330	2	Azadirachta Indica	0.0262
3	Madhuca Indica	0.0113	3	Tectona grandis	0.0173
4	Tectona grandis	0.0093	4	Acacia nilotica	0.0071
5	Samanea saman	0.0076	5	Butea monosperma	0.0056
6	Butea monosperma	0.0072	6	Madhuca Indica	0.0053
7	Tamarindus Indica	0.0057	7	Tamarindus Indica	0.0024
8	Acacia nilotica	0.0038	8	Pongamia pinnata	0.0018
9	Syzygium jambos	0.0028	9	Dendrocalamus strictus	0.0017
10	Borassus flabellifer	0.0020	10	Samanea saman	0.0017

iii. Rural Habitations:

The total GS of this Stratum is estimated to be $\mathbf{1 1 5 8 6 . 1 2} \mathrm{m}^{3}$. Total number of stems estimated to be 10669. The unit volume (per ha) is $21.134 \mathrm{~m}^{3}$ and stems per ha are 19.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \hline \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in m^{3}	$\begin{aligned} & \text { S. } \\ & \text { No } \\ & \hline \end{aligned}$	Species name	No. of Stems
1	Azadirachta Indica	4411.14	1	Azadirachta Indica	3478
2	Mangifera indica	1350.50	2	Tamarindus Indica	951
3	Eucalyptus tereticomis	1158.88	3	Mangifera indica	888
4	Tamarindus Indica	860.43	4	tereticomis	705

5	Tectona grandis	723.37	5	Tectona grandis	676
6	Lannea coromandelica	347.26	6	Grewia rothi	487
			7	Cocos nucifera	344
7	Madhuca Indica	242.33	8	Pongamia pinnata	344
8	Leucaena leucocephala	234.57	9	Leucaena leucocephala	287
9	Cocos nucifera	206.48	10	Dalbergia sissoo	218
10	Grewia rothi	190.26			

iv. Urban Habitations

The total GS of this Stratum is estimated to be $\mathbf{8 8 7 . 9 7} \mathrm{m}^{3}$. Total number of stems is estimated to be 736. The unit volume (per ha) $4.353 \mathrm{~m}^{3}$ and stems per ha are 4

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \hline \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in m^{3}	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems
1	Azadirachta indica	252.00	1	Azadirachta indica	252
2	Albizia lebbeck	25.20	2	Pongamia pinnata	58
3	Grewia rothi	40.32	3	Acacia nilotica	53
4	Pongamia pinnata	57.96	4	Mangifera indica	43
5	Syzygium jambos	22.68	5	Grewia rothi	40
6	Eucalyptus tereticomis	25.20	6	Leucaena leucocephala	35
7	Mangifera indica	42.84	7	Albizia lebbeck	25
8	Ficus religiosa	12.60		Eucalyptus tereticomis	
9	Leucaena leucocephala	35.28	8	tereticomis	25 25
10	Prunus dulcis	5.04	10	Syzygium jambos	23

v. Scattered Trees:

The total GS of this Stratum is estimated to be $\mathbf{0 . 0 1 6 M m}{ }^{3}$. Total number of stems estimated to be $\mathbf{0 . 1 7 9}$ Million. The unit volume (per ha) is $5.956 \mathrm{~m}^{3}$ and stems per ha are 6.

Top 10 species based on volume and Stems are shown below:

| Top 10 species Based on Volume | | Based on No. of Stems | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S.
 No | Species name | Volume in
 Mm 3 | S.
 No | Species name | No. of Stems |

1	Azadirachta indica	0.0054	1	Azadirachta indica	2636
2	Mangifera indica	0.0040	2	Butea monosperma	1569
3	Butea monosperma	0.0014	3	Mangifera indica	1548
4	Eucalyptus tereticomis		4	Tectona grandis	868
5	Madhuca indica	0.0010	5	Eucalyptus tereticomis	533
6	Tectona grandis	0.0008	6	Alangium	
7	Tamarindus Indica	0.0006		salvifolium	450
8	Acacia nilotica	0.0003	7	Tamarindus Indica	397
9	Lannea		8	Acacia nilotica	387
	coromandelica	0.0003	9	Grewia rothi	251
10	Albizia lebbeck	0.0002	10	Cassia fistula	199

4.7.3 OTHER FINDINGS:

a. Roads having Potential for taking up plantations:
i. National High Way: NH 44 and 65 are passing through this district with a length of $\mathbf{1 7 7 . 6} \mathbf{~ k m}$. However, it is observed that only 27.4 km length is covered with trees along the road, which comes only to 15.43% of the NH. Balance $\mathbf{1 5 0 . 2}$ km length of road network is devoid of Avenue Plantation; where planting could be taken up if found to be free from encroachments and encumbrances, in a phased manner.
ii. State High Way: The length of the state highway is 272.9 km, out of which only 48.4 km length is covered with the trees along the road, which comes to 17.74% of SH . Balance $\mathbf{2 2 4 . 5}$ km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
iii. Other Roads: The length of these roads is $\mathbf{9 7 4 4 . 2} \mathrm{km}$, out of which only 652.4 km length is with the trees, which comes to 6.70% of other road network. Balance 9091.9 km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
b. Railway Tracks having Potential for taking up plantations: The length of the railway track is estimated as $\mathbf{1 0 2 . 7} \mathbf{~ k m}$; however, only 2.5 km length is covered trees, which comes to 2.43% of the length of the railway track. Balance $\mathbf{1 0 0 . 2} \mathbf{~ k m}$ length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
c. Canals: The length of the canals is estimated as $\mathbf{1 3 9 . 2} \mathrm{km}$; however, only 7.2 km length is covered trees, which comes to 5.17% of the
length of the canals. There is good scope for taking up planting along the canals, if suitable.
d. Streams/ Rivers: The length of the streams/ rivers is estimated as 255.6 km; however, only 7.8 km length is covered trees, which comes to 3.05% of the length of the canals. There is good scope for taking up planting, if suitable.

4.8 RANGAREDDY AND HYDERABAD

DISTRICTS

4.8.1 Introduction:

Rangareddy \& Hyderabad districts are located in Southwest part of Telangana. The total geographical area of the district is $\mathbf{7 7 1 8 . 5 2} \mathrm{km}^{2}$, out of which notified forest area is $\mathbf{7 5 8 . 8 7} \mathrm{km}^{2}$. The Hyderabad metro district located within this district.

4.8.2 Assessment of resources under Trees Outside notified

 Forests:
A. TREE COVER:

Extent of tree cover under various classes is $493.16 \mathrm{~km}^{2}$, which comes to 6.39% of the geographical area and details as follows:

Natural Forests	-	$\mathbf{1 2 5 . 3 7}$	$\mathbf{k m}^{\mathbf{2}}$
Plantations (Block and Linear)	-	$\mathbf{1 4 9 . 1 8}$	$\mathbf{k m}^{\mathbf{2}}$
Rural Habitations	-	$\mathbf{4 . 1 3}$	$\mathbf{k m}^{\mathbf{2}}$
Urban Habitations	-	$\mathbf{2 0 . 4 8}$	$\mathbf{k m}^{\mathbf{2}}$
Scattered Trees	-	$\mathbf{1 9 4}$	$\mathbf{k m}^{\mathbf{2}}$

The natural forests, plantations and habitations constitute 25.42\%, $\mathbf{3 0 . 2 5 \%}$ and $\mathbf{4 4 . 3 3 \%}$ of the total ToF Area respectively.

The stratum wise points and extent of area shown below:

S.No	Stratum	Sub stratum	Canopy Class	No. of sample plots	Area in $K^{2}{ }^{2}$
1	Natural Forests	Block	MDF	3	2.82
			OF	20	31.88
			Scrub	57	82.86
		Linear		19	7.81
		Total			125.37
2	Plantations	Block		80	134.21

		Linear	31	14.97
		Total		149.18
3	Habitations	Rural	50	4.13
		Urban	43	20.48
		Total		24.61
4	Scattered Trees		60	194
		Grand Total	363	493.16

Distribution of TOF points in the district

B. GROWING STOCK AND NUMBER OF STEMS:

Overall Growing stock is estimated to be $\mathbf{1 . 5 6 5 7} \mathrm{Mm}^{3}$. Breakup is as follows:

- Natural Forests
$-0.7800 \mathrm{Mm}^{3}$
- Plantations
- Rural Habitations
- Urban Habitations
- $0.0291 \mathrm{Mm}^{3}$
- Scattered Trees

Number of Stems is estimated to be $\mathbf{3 . 5 1 9 9}$ Million. Breakup is as follows:

- Natural Forests
- Plantations
- Rural Habitations
- Urban Habitations
- Urban
- 1.5797 Million
- 1.6676 Million
- 0.0146 Million
- 0.0416 Million
- Scattered Trees
- 0.2164 Million

C. THE STRATUM WISE DETAILS ARE AS FOLLOWS:

i. Natural forests:

The total GS of this Stratum is estimated to be $\mathbf{0 . 7 8 0 0} \mathrm{Mm}^{3}$. Total number of stems is estimated to be $\mathbf{1 . 5 7 9 7}$ Million.

S.no	Sub Stratum	Class	Area in $K^{\mathbf{2}}{ }^{2}$	$\begin{gathered} \text { Total GS } \\ \left(\mathbf{M m}^{3}\right) \end{gathered}$	Unit volume ($\mathrm{m}^{3} / \mathrm{ha}$)	No. of Stems in Million	Stems/ ha in No's
1	Block	MDF	2.81	0.014	44.254	0.154	110
2		OF	31.88	0.059	18.692	0.298	108
3		Scrub	82.85	0.360	43.405	1.642	77
4	Linear		14.97	0.347	231.427	0.485	323
Total			132.51	0.780		1.579	

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \\ & \hline \end{aligned}$	Species name	Volume in $M^{3}{ }^{3}$	$\begin{aligned} & \text { S. } \\ & \text { No } \\ & \hline \end{aligned}$	Species name	No. of Stems (Million)
	Eucalyptus		1	Azadirachta indica	0.2003
1	camaldulenss	0.1429	2	Eucalyptus	
2	Azadirachta indica	0.1409	2	camaldulensi	0.1744
3	Tamarindus indica	0.0957	3	Eucalyptus tereticomis	0.1253
4	Pongamia pinnata	0.0833	4	Acacia nilotica	0.0955
5	Phoenix sylvestris	0.0384	5	Peltophorum	
6	Acacia nilotica	0.0302	5	pterocarpum	0.0839
	Peltophorum		6	Pongamia pinnata	0.0799
7	pterocarpum	0.0298	7	Albizia amara	0.0780
8	Butea monosperma	0.0281	8		0.0751
9	Holoptelea integrifolia	0.0229	9	Phamarindus Indica	0.0751 0.0654
10	Acacia chundra	0.0156	10	Chloroxylon swietenia	0.0618

[^0]The total GS of this Stratum is estimated to be $\mathbf{0 . 6 0 1} \mathrm{Mm}^{3}$. Total number of stems is estimated to be $\mathbf{1 . 5 7 4}$ Million.

Stratum	Area in $\mathbf{K m}^{\mathbf{2}}$	Total GS $\mathbf{(M m}^{\mathbf{3}} \mathbf{)}$	Unit volume $\mathbf{(m}^{\mathbf{3}} / \mathbf{h a)}$	No. of Stems in Million	Stems/ ha in No's
Block	134.211	0.522	38.861	1.547	115
Linear	7.815	0.074	95.556	0.120	154
Total	142.026	$\mathbf{0 . 5 9 6}$		$\mathbf{1 . 6 6 7}$	

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
S. No	Species name	Volume in $\mathbf{M m}^{3}$	S.	Species name	No. of Stems (Million)
1	Mangifera indica	0.3092	1	Mangifera indica	1.1666
2	Eucalyptus		2	Grewia rothi	0.1141
		0.0760	3	Tectona grandis	0.0775
3	Tectona grandis	0.0596		Eucalyptus	
4	Azadirachta Indica	0.0357	4	tereticomis	0.0598
5	Eucalyptus camaldulensi	0.0289	5	Azadirachta Indica	0.0581
6	Grewia rothi	0.0156	6	camaldulensi	0.0285
7	Tamarindus indica	0.0101	7	Cocos nucifera	0.0235
8	Phyllanthus emblica	0.0073	8	Moringa oleifera	0.0185
9	Butea monosperma	0.0068	9	Tamarindus Indica	0.0161
10	Peltophorum pterocarpum	0.0068	10	Prosopis juliflora	0.0143

iii. Rural Habitations:

The total GS of this Stratum is estimated to be $9449.98 \mathrm{~m}^{3}$. Total number of stems is estimated to be 14639. The unit volume (per ha) is $\mathbf{2 2 . 8 8 1} \mathrm{m}^{3}$ and stems per ha is $\mathbf{3 5}$.
Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume	Based on No. of Stems

$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in m^{3}	$\begin{aligned} & \hline \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems
1	Azadirachta indica	4738.15	1	Azadirachta indica	5030
2	Eucalyptus		2	Cocos nucifera	1265
	tereticomis	583.58	3	Eucalyptus	
3	Tamarindus indica	537.90		tereticomis	989
4	Pongamia pinnata	342.12	4	Tamarindus indica	792
5	Cocos nucifera	297.96	5	Leucaena leucocephala	646
6	Peltophorum pterocarpum	276.89	6	Pongamia pinnata	641
7	Leucaena		7	Tectona grandis	624
	leucocephala	251.73	8	Acacia nilotica	596
8	Tectona grandis	245.15	9	Saraca asoka	433
9	Saraca asoka	217.72	10	Holoptelea integrifolia	371
10	Acacia nilotica	199.47			

iv. Urban Habitations:

The total GS of this Stratum is estimated to be $29100 \mathrm{~m}^{3}$. Total number of stems is estimated to be 41553. The unit volume (per ha) is $\mathbf{1 4 . 2 0 9} \mathrm{m}^{3}$ and stems per ha is $\mathbf{2 0}$.
Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \hline \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in m^{3}	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems
1	Peltophorum pterocarpum	6497.89	1	Azadirachta indica	6566
2	Azadirachta indica	5738.65	2	pterocarpum	4487
3	Eucalyptus		3	Cocos nucifera	4056
	camaldulensi	2800.92	4	Mangifera indica	3143
4	Pongamia pinnata	1496.11		Eucalyptus	
5	Cocos nucifera	1333.38	5	camaldulensi	3042
6	Mangifera indica	937.27	6	Pongamia pinnata	2459
7	Alstonia scholaris	902.86		Leucaena leucocephala	1698
8	Millingtonia hortensis	885.26	7	leucocephala Millingtonia hortensis	1698
9	Eucalyptus tereticomis	881.00	8	hortensis	1470
10	Ficus religiosa	834.41	10	Cassia siamea	1293

v. Scattered Trees:

The total GS of this Stratum is estimated to be $\mathbf{0 . 1 5 1} \mathbf{M m}^{3}$. Total number of stems is estimated to be $\mathbf{0 . 2 1 6}$ Million. The unit volume (per ha) is $\mathbf{7 . 7 8 2} \mathrm{m}^{3}$ and stems per ha is $\mathbf{1 1}$.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems
1	Azadirachta indica	0.0554	1	Azadirachta indica	70611
2	Butea monosperma	0.0141	2	Borassus flabellifer	22422
3	Grewia tiliaefolia	0.0115	3	Acacia nilotica	11490
4	Tectona grandis	0.0088	4	Butea monosperma	9816
5	Tamarindus indica	0.0087	5	Bombax religiosum	9259
6	Acacia nilotica	0.0068	6	Tectona grandis	8366
7	Acacia leucophloea	0.0042	7	Eluodendrum monogynum	
8	Zizyphus mauritiana	0.0041	8	monogynum Holoptelea integrifolia	6805
9	Lannea coromandelica	0.0036	9	Tamarindus indica	6247
10	Pongamia pinnata	0.0031	10	Acacia chundra	4462

4.8.3 OTHER FINDINGS:

a. Roads having Potential for taking up plantations:
i. National High Way: NH 44 and 65 are passing through this district with a length of 59.7 km . However, it is observed that only 5.9 km length is covered with trees along the road, which comes only to 9.88% of the NH. Balance 53.8 km length of road network is devoid of Avenue Plantation; where planting could be taken up if found to be free from encroachments and encumbrances, in a phased manner.
ii. State High Way: The length of the state highway is $\mathbf{3 2 9 . 7}$ km, out of which only 55.9 km length is covered with the trees along the road, which comes to 16.95% of SH . Balance $\mathbf{2 7 3 . 8}$ km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
iii. Other Roads: The length of these roads is 13957 km, out of which only $\mathbf{1 0 0 0 . 8} \mathrm{km}$ length is with the trees, which comes to 7.17% of other road network. Balance 12956.2 km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
b. Railway Tracks having Potential for taking up plantations: The length of the railway track is estimated as 297.4 km ; however, only 3.6 km length is covered trees, which comes to 1.21% of the length of the railway track. Balance 293.8 km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
c. Canals: The length of the canals is estimated as 114.6 km ; however, only 0.1 km length is covered trees, which comes to 0.09% of the length of the canals. There is good scope for taking up planting along the canals, if suitable.
d. Streams/ Rivers: The length of the streams/ rivers is estimated as 1454.9 km ; however, only 10.5 km length is covered trees, which comes to 0.72% of the length of the canals. There is good scope for taking up planting, if suitable.

4.9 WARANGAL DISTRICT

4.9.1 Introduction:

The Warangal district is located in Northern east part of Telangana. The total geographical area of the district is $\mathbf{1 2 8 3 1 . 9 2} \mathrm{km}^{2}$, out of which notified forest area is $4023.45 \mathrm{~km}^{2}$. There are two territorial forest divisions and one wildlife management division in this district.

4.9.2 Assessment of resources under Trees Outside notified Forests:

A. TREE COVER:

Extent of tree cover under various classes is $\mathbf{5 2 9 . 1 0} \mathrm{km}^{2}$, which comes to 4.12\% of the geographical area and details as follows:

Natural Forests	-	$\mathbf{1 3 4 . 4 4}$	$\mathbf{k m}^{\mathbf{2}}$
Plantations (Block and Linear)	-	$\mathbf{1 1 4 . 7 8}$	$\mathbf{k m}^{\mathbf{2}}$
Rural Habitations	-	$\mathbf{8 . 8 8}$	$\mathbf{k m}^{\mathbf{2}}$
Urban Habitations	-	3.29	$\mathbf{k m}^{\mathbf{2}}$
Scattered Trees	-	$\mathbf{2 6 7 . 7 1}$	$\mathbf{k m}^{\mathbf{2}}$

The natural forests, plantations and habitations constitute 25.41\%, $\mathbf{2 1 . 6 9 \%}$ and $\mathbf{5 2 . 9 0} \%$ of the total ToF Area respectively.

The stratum wise points and extent of area shown below:

S.No	Stratum	Sub stratum	Canopy Class	No. of sample plots	Area in $K^{2}{ }^{2}$
1	Natural Forests	Block	MDF	3	5.18
			OF	20	23.78
			Scrub	57	100.23
		Linear		19	5.25
		Total			134.44
2	Plantations	Block		80	104.95
		Linear		31	9.83
		Total			114.78
3	Habitations	Rural		50	8.88

		Urban		43	3.29
		Total		$\mathbf{1 2 . 1 7}$	
4	Scattered Trees			60	267.71
		Grand Total	$\mathbf{3 6 3}$	$\mathbf{5 2 9 . 1 0}$	

Distribution of TOF points in the district

B. GROWING STOCK AND NUMBER OF STEMS:

Overall Growing stock is estimated to be $\mathbf{1 . 3 9 0 2} \mathrm{Mm}^{3}$. Breakup is as follows:

- Natural Forests
- 0.3655 Mm 3
- Plantations
- 0.9276 Mm 3
- Rural Habitations
- $0.0095 \mathrm{Mm}^{3}$
- Urban Habitations
- 0.0026 Mm 3
- Scattered Trees
- 0.0850 Mm 3

Number of Stems is estimated to be 4.3333 Million. Breakup is as follows:

- Natural Forests
- Plantations
- Rural Habitations
- Urban Habitations
- Scattered Trees

C. THE STRATUM WISE DETAILS ARE AS FOLLOWS:

i. Natural forests:

The total GS of this Stratum is estimated to be $\mathbf{0 . 3 6 5 5} \mathrm{Mm}^{3}$. Total number of stems estimated to be $\mathbf{1 . 4 0 8 6}$ Million.

S.no	Sub Stratum	Class	$\begin{gathered} \text { Area in } \\ K^{2}{ }^{2} \end{gathered}$	$\begin{gathered} \text { Total GS } \\ \left(\mathbf{M m}^{3}\right) \end{gathered}$	Unit volume ($\mathrm{m}^{3} / \mathrm{ha}$)	No. of Stems in Million	Stems/ ha in No's
1	Block	MDF	5.176	0.010	18.467	0.072	138
2		OF	237.75	0.130	54.88	0.356	150
3		Scrub	100.231	0.165	16.419	0.843	84
4	Linear		5.254	0.060	61.899	0.137	139
Total			348.411	0.365		1.408	

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \hline \text { S. } \\ & \text { No } \\ & \hline \end{aligned}$	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems (Million)
1	Borassus flabellifer	0.0845	1	Acacia nilotica	0.3361
2	Azadirachta Indica	0.0744	2	Azadirachta Indica	0.2990
3	Bombax religiosum	0.0523	3	Borassus flabellifer	0.1655
4	Acacia nilotica	0.0236	4	Butea monosperma	0.1374
5	Butea monosperma	0.0212	5	Bombax religiosum	0.0527
6	Albizia lebbeck	0.0140	6	Holoptelea integrifolia	0.0455
7	Holoptelea integrifolia	0.0106	7	Phoenix sylvestris	0.0455
8	Ficus benghalensis	0.0106	8	Eluodendrum monogynum	0.0302
9	Phoenix sylvestris	0.0082		Chloroxylon	0.0302
10	Madhuca indica	0.0053	9	swietenia	0.0222
			10	Tamarindus indica	0.0141

ii. Plantations

The total GS of this Stratum is estimated to be $\mathbf{0 . 9 2 7} \mathrm{Mm}^{3}$. Total number of stems estimated to be $\mathbf{2 . 7 1 8}$ Million.

	Area in	Total GS	Unit volume	No. of Stems	Stems/ ha

Stratum	$\mathbf{K m}^{\mathbf{2}}$	$\mathbf{M m}^{\mathbf{3}} \mathbf{)}$	$\mathbf{m}^{\mathbf{3}} \mathbf{/ h a)}$	in Million	in No's
Block	104.947	0.903	86.095	2.657	253
Linear	9.834	0.024	45.746	0.061	116
Total	114.781	$\mathbf{0 . 9 2 7}$		$\mathbf{2 . 7 1 8}$	

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{aligned} & \text { S. } \\ & \text { No } \\ & \hline \end{aligned}$	Species name	No. of Stems (Million)
1	Mangifera indica	0.8559	1	Mangifera indica	2.2997
2	Eucalyptus camaldulensi	0.0200	2	Eucalyptus camaldulensi	0.2454
3	Tectona grandis	0.0100	3	Tectona grandis	0.0355
4	Azadirachta indica	0.0083	4	Azadirachta Indica	0.0350
5	Borassus flabellifer	0.0051	5	Others(Unknown)	0.0223
6	Hardwickia binata	0.0047	6	Acacia nilotica	0.0082
7	Albizia lebbeck	0.0034	7	Butea monosperma	0.0077
8	Tamarindus Indica	0.0019	8	Borassus flabellifer	0.0056
9	Others(Unknown)	0.0019	9	Phoenix sylvestris	0.0056
10	Cocos nucifera	0.0017	10	Hardwickia binata	0.0053

iii. Rural Habitations:

The total GS of this Stratum is estimated to be $9548.99 \mathrm{~m}^{3}$. Total number of stems estimated to be 18485. The unit volume (per ha) is $10.753 \mathrm{~m}^{3}$ and stems per ha is 21.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume	Based on No. of Stems

$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in m^{3}	S. No	Species name	No. of Stems
1	Tamarindus indica	3245.05	1	Azadirachta indica	6194
2	Azadirachta Indica	3201.62	2	Tamarindus Indica	3613
3	Borassus flabellifer	791.11	3	Acacia nilotica	1914
4	Cocos nucifera	375.96	4	Cocos nucifera	1121
5	Bombax religiosum	308.91	5	Tectona grandis	755
6	Acacia nilotica	237.05	6	Borassus flabellifer	743
7	Merremia vitifolia	154.41	7	Leucaena leucocephala	441
8	Mangifera indica	153.28	8	leucocephala	441
9	Tectona grandis	87.22	8	Grewia rothi	441
10	Samanea saman	79	9	Bombax religiosum	302
	Samanea saman	79.0	10	Mangifera indica	277

iv. Urban Habitations:

The total GS of this Stratum is estimated to be $\mathbf{2 6 3 7} \mathrm{m}^{3}$. Total number of stems estimated to be 6089. The unit volume (per ha) is $\mathbf{8 . 0 1 8}$ m^{3} and stems per ha are $\mathbf{1 8}$.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in m^{3}	$\begin{aligned} & \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems
1	Azadirachta indica	1174.57	1	Azadirachta indica	1980
2	Tamarindus indica	271.96	2	Tamarindus indica	544
3	Borassus flabellifer	202.22	3	Tectona grandis	513
4	Mangifera indica	154.17	4	Pongamia pinnata	380
5	Cocos nucifera	109.65	5	Mangifera indica	349
6	Pongamia pinnata	80.95	6	Cocos nucifera	325
7	Albizia lebbeck	65.72	7	Grewia rothi	291
8	Tectona grandis	62.24	8	Borassus flabellifer	280
9	Samanea saman	61.88	9	Acacia nilotica	209
10	Leucaena leucocephala	39.56	10	Leucaena leucocephala	178

v. Scattered Trees:

The total GS of this Stratum is estimated to be $\mathbf{0 . 0 8 5} \mathbf{M m}^{3}$. Total number of stems estimated to be $\mathbf{0 . 1 8 1}$ Million. The unit volume (per ha) is $\mathbf{3 . 1 7 7} \mathrm{m}^{3}$ and stems per ha are $\mathbf{7}$.

Top 10 species based on volume and Stems are shown below:

Top 10 species Based on Volume			Based on No. of Stems		
$\begin{aligned} & \hline \text { S. } \\ & \text { No } \end{aligned}$	Species name	Volume in $\mathbf{M m}^{3}$	$\begin{aligned} & \hline \text { S. } \\ & \text { No } \end{aligned}$	Species name	No. of Stems
1	Azadirachta indica	0.0278	1	Azadirachta indica	70611
2	Borassus flabellifer	0.0220	2	Borassus flabellifer	22422
3	Bombax religiosum	0.0065	3	Acacia nilotica	11490
4	Holoptelea		4	Butea monosperma	9816
	integrifolia	0.0038	5	Bombax religiosum	9259
5	Tamarindus indica	0.0029	6	Tectona grandis	8366
6	Acacia chundra	0.0020	7	Eluodendrum	
7	Terminalia arjuna	0.0019		monogynum	6805
8	Butea monosperma	0.0019	8	Holoptelea integrifolia	
9	Acacia nilotica	0.0018	9		6247
10	Azadirachta indica	0.0278	10	Tamarindus indica	6024

4.9.3 OTHER FINDINGS:

a. Roads having Potential for taking up plantations:

i. National High Way: NH 163 is passing through this district with a length of $\mathbf{1 7 9} \mathbf{~ k m}$. However, it is observed that only $\mathbf{2 2 . 8}$ km length is covered with trees along the road, which comes only to 12.74% of the NH. Balance $\mathbf{1 5 6 . 2}$ km length of road network is devoid of Avenue Plantation; where planting could be taken up if found to be free from encroachments and encumbrances, in a phased manner.
ii. State High Way: The length of the state highway is $\mathbf{1 4 5 . 7}$ km, out of which only $\mathbf{5 1}$ km length is covered with the trees along the road, which comes to 35.00% of SH . Balance 94.7 km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
iii. Other Roads: The length of these roads is 17824 km, out of which only 773.9 km length is with the trees, which comes to 4.34% of other road network. Balance $\mathbf{1 7 0 5 0 . 1}$ km length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
b. Railway Tracks having Potential for taking up plantations: The length of the railway track is estimated as 219.6 km ; however, only 0.9 km length is covered trees, which comes to 0.41% of the length of
the railway track. Balance $\mathbf{2 1 8 . 7} \mathrm{km}$ length could be taken up for planting if found to be free from encroachments and encumbrances, in a phased manner.
c. Canals: The length of the canals is estimated as 91.8 km ; however, only 4.8 km length is covered trees, which comes to 5.23% of the length of the canals. There is good scope for taking up planting along the canals, if suitable.
d. Streams/ Rivers: The length of the streams/ rivers is estimated as $\mathbf{5 3 8 7 . 1} \mathrm{km}$; however, only $\mathbf{1 2 1 . 3} \mathrm{km}$ length is covered trees, which comes to 2.25% of the length of the canals. There is good scope for taking up planting, if suitable.

CHAPTER-V

ESTIMATION OF ANNUAL YIELD FROM TREES OUTSIDE FORESTS

The Hon'ble Supreme Court of India in a series of its orders in Writ Petition (civil) 202 of 1995 and IAs filed therein directed State Governments to constitute, an Expert Committee to assess

- the sustainable capacity of the Forests of the State vis-a-vis saw mills and timber based industry
- the number of existing saw mills which can safely be sustained in the State.
- the optimum distance from the forest qua that State at which the saw mill should be located.
The Hon'ble Supreme Court of India in a series of judgements ordered that

> "No State or Union Territory shall permit any unlicensed sawmills, veneer, plywood industry to operate and they are directed to close all such unlicensed unit forthwith. No State Government or Union Territory will permit the opening of any sawmills, veneer or plywood industry without prior permission of the Central Empowered Committee. It shall be open to apply to this court for relaxation and or appropriate modification of orders qua plantation or grant of licences. No saw mills should be established within a radius of 5 km from the boundary of the forest area".

The orders of the Hon'ble Supreme Court of India explicitly reminded the States of their prime obligation of legal supervision over the saw mills and the veneer and plywood mills. It also laid sufficient emphasis over the sustainability of Forests. In addition to the two it made it obligatory upon the States to assess availability of legal timber and the capacity of saw mills and veneer and plywood units.

Further, the Hon'ble Supreme Court of India directed that

- The State Level Committees for Wood-Based Industries ("SLCs") are, subject to the compliance of the prescribed guidelines and procedure, authorized to take decisions regarding the grant of license/permission to the wood-based industries;
- In each State/UT for which the SLC has so far not been constituted, the SLC under the Chairmanship of the Principal

Chief Conservator of Forests with a representative of the MoEF \& CC and an officer of the State Forest Department/Industries Department not below the rank of the Chief Conservator of Forests/ equivalent rank will immediately be constituted;

- The MoEF is authorized to issue appropriate guidelines in conformation with the orders and directions issued by this Court and also the existing guidelines to the SLCs relating to assessment of timber availability for wood-based industries and grant of license/permission to the wood-based industries including addition of new machineries and also utilization of amounts recovered from the wood-based industries and connected matters;
- Any person aggrieved by the decision taken by the SLC may file an appeal before the MoEF \& CC seeking appropriate relief within 60 days' time. If, for any reason, any person is aggrieved by the orders so passed in the appeal, he may prefer an appropriate petition/application/appeal before the appropriate forum/Court for grant of appropriate relief(s).

Therefore, the assessment of timber and wood products and their annual yields has become necessary in order to link with the sustenance of wood based industries.

Calculation of Yield:

Yield calculation involves determination of quantum of yield i.e., the quantity of forest produce which will be available annually or periodically from a forest over a stated period of time.

It involves (i) Estimation of the productive capacity of an area (ii) Deciding as to how much of this could be removed (iii) How much re-invested in the wood capital of the area (iv) How much and from what portion of the growing stock the felling should be made

Though several methods are available for calculating the annual yield, Von Mantel's formula is used in the present study. It considers that the annual yield for any forest must bear the same proportion to the actual growing stock as normal increment bears to normal growing stock. The formula for annual yield is $\mathbf{2 *} \mathbf{G S} / \mathbf{r}$ where ' $\mathbf{G S}$ ' is the Growing Stock and ' \mathbf{r} ' is the rotation of the crop. This formula is known as formula of 'glorious simplicity'.

In all there are $\mathbf{3 6 3}$ species of trees outside the notified forests. Of which 57 are Timber species, Six Pulpwood species and $\mathbf{3 0 0}$ Fuel wood species. The rotation period for each species is obtained. The annual yield
from the ToF is estimated to be $\mathbf{0 . 4 9 8 2}$ Mcum of Timber, $\mathbf{0 . 1 5 1 7}$ Mcum of Pulp and $\mathbf{0 . 2 1 9 8}$ Mcum of Fuel. The details are as follows:

Abstract of Annual Yield from different Classes of Species

SI. No.	Name of the Class	No. of Species	Annual Yield (Mcum)
1	Timber	57	0.4982
2	Pulp	6	0.1517
3	Fuel	300	0.2198
	Total	$\mathbf{3 6 3}$	$\mathbf{0 . 8 6 9 8}$

5.1: DIA-METER CLASS WISE ESTIMATED TIMBER ANNUAL YEILD

S.no	Name of the Class	$\begin{gathered} 10- \\ 20 \mathrm{~cm} \end{gathered}$	$\begin{gathered} \text { 21- } \\ 30 \mathrm{~cm} \end{gathered}$	$\begin{gathered} 31- \\ 40 \mathrm{~cm} \end{gathered}$	$\begin{gathered} \text { 41- } \\ 50 \mathrm{~cm} \end{gathered}$	$\begin{aligned} & 51- \\ & 60 \mathrm{~cm} \end{aligned}$	$\begin{gathered} \text { 61- } \\ 70 \mathrm{~cm} \end{gathered}$	$>70 \mathrm{~cm}$	SUM	Rotation Age(yrs)	Annual Yeild (m. cum)
1	TIMBER	1.3262	1.7289	1.4956	1.3483	0.6464	0.5187	1.3314	8.3956	60	0.2799
2	TIMBER	0.2584	0.1826	0.1344	0.1003	0.1737	0.0743	0.1925	1.1161	40	0.0558
3	TIMBER	0.2166	0.2905	0.3784	0.2780	0.2457	0.2125	0.9495	2.5712	100	0.0514
4	TIMBER	0.0234	0.0814	0.0879	0.0437	0.0196	0.0268	0.0743	0.3570	25	0.0286
5	TIMBER	0.0033	0.0342	0.1459	0.1977	0.0654	0.0069	0.0782	0.5316	80	0.0133
6	TIMBER	0.0088	0.0138	0.0244	0.0491	0.0337	0.0617	0.3996	0.5910	100	0.0118
7	TIMBER	0.0334	0.0034	0.0165	0.0366	0.0453	0.0401	0.0552	0.2303	50	0.0092
8	TIMBER	0.0017	0.0030	0.0025	0.0075	0.0042	0.0087	0.1650	0.1927	50	0.0077
9	TIMBER	0.0276	0.0339	0.0457	0.0236	0.0080	0.0113	0.0215	0.1716	50	0.0069
10	TIMBER	0.0026	0.0110	0.0191	0.0317	0.0427	0.0220	0.0598	0.1889	60	0.0063
11	TIMBER	0.0058	0.0130	0.0284	0.0161	0.0043	0.0105	0.0136	0.0917	40	0.0046
12	TIMBER	0.0061	0.0059	0.0078	0.0194	0.0340	0.0310	0.0888	0.1930	100	0.0039
13	TIMBER	0.0153	0.0076	0.0081	0.0051	0.0053	0.0003	0.0150	0.0566	50	0.0023
14	TIMBER	0.0087	0.0099	0.0076	0.0073	0.0081	0.0050	0.0073	0.0539	50	0.0022
15	TIMBER	0.0008	0.0170	0.0079	0.0145	0.0056	0.0113	0.0169	0.0740	80	0.0019
16	TIMBER	0.0097	0.0088	0.0077	0.0021	0.0033	0.0018	0.0035	0.0368	50	0.0015
17	TIMBER	0.0042	0.0042	0.0054	0.0080	0.0012	0.0115	0.0001	0.0346	50	0.0014
18	Timber	0.0030	0.0043	0.0106	0.0024	0.0019	0.0027	0.0037	0.0286	50	0.0011
19	TIMBER	0.0034	0.0060	0.0082	0.0070	0.0100	0.0026	0.0080	0.0451	80	0.0011
20	TIMBER	0.0007	0.0004	0.0011	0.0017	0.0168	0.0064	0.0000	0.0270	50	0.0011
21	TIMBER	0.0031	0.0022	0.0028	0.0041	0.0000	0.0003	0.0086	0.0210	50	0.0008
22	TIMBER	0.0012	0.0023	0.0058	0.0005	0.0004	0.0046	0.0026	0.0175	50	0.0007
23	TIMBER	0.0026	0.0024	0.0020	0.0036	0.0052	0.0001	0.0013	0.0171	50	0.0007
24	tIMBER	0.0002	0.0006	0.0000	0.0000	0.0000	0.0029	0.0113	0.0150	50	0.0006
25	TIMBER	0.0004	0.0014	0.0023	0.0010	0.0018	0.0000	0.0042	0.0110	50	0.0004
26	TIMBER	0.0026	0.0033	0.0024	0.0014	0.0008	0.0000	0.0000	0.0104	50	0.0004
27	TIMBER	0.0021	0.0015	0.0004	0.0008	0.0001	0.0000	0.0062	0.0110	60	0.0004
28	TIMBER	0.0007	0.0021	0.0008	0.0011	0.0000	0.0023	0.0000	0.0070	50	0.0003
29	TIMBER	0.0011	0.0030	0.0039	0.0022	0.0000	0.0000	0.0001	0.0102	80	0.0003

30	TIMBER	0.0000	0.0000	0.0001	0.0053	0.0000	0.0000	0.0000	0.0054	50	0.0002
31	TIMBER	0.0009	0.0022	0.0018	0.0003	0.0000	0.0000	0.0001	0.0053	50	0.0002
32	TIMBER	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0050	0.0051	50	0.0002
33	TIMBER	0.0011	0.0011	0.0001	0.0012	0.0007	0.0000	0.0000	0.0042	50	0.0002
34	TIMBER	0.0032	0.0006	0.0000	0.0000	0.0000	0.0000	0.0000	0.0038	50	0.0002
35	TIMBER	0.0003	0.0002	0.0000	0.0000	0.0000	0.0027	0.0000	0.0032	50	0.0001
36	TIMBER	0.0013	0.0016	0.0000	0.0000	0.0000	0.0000	0.0000	0.0029	50	0.0001
37	TIMBER	0.0000	0.0000	0.0000	0.0000	0.0000	0.0028	0.0000	0.0028	50	0.0001
38	TIMBER	0.0021	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0025	50	0.0001
39	TIMBER	0.0000	0.0000	0.0002	0.0010	0.0007	0.0000	0.0000	0.0019	50	0.0001
40	TIMBER	0.0002	0.0002	0.0000	0.0011	0.0000	0.0000	0.0002	0.0018	50	0.0001
41	TIMBER	0.0000	0.0004	0.0008	0.0000	0.0000	0.0000	0.0000	0.0011	50	0.0000
42	TIMBER	0.0006	0.0001	0.0001	0.0001	0.0000	0.0000	0.0000	0.0010	50	0.0000
43	TIMBER	0.0000	0.0000	0.0009	0.0000	0.0000	0.0000	0.0000	0.0009	50	0.0000
44	TIMBER	0.0000	0.0001	0.0001	0.0001	0.0002	0.0004	0.0000	0.0009	50	0.0000
45	TIMBER	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0009	0.0009	50	0.0000
46	TIMBER	0.0006	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0008	50	0.0000
47	TIMBER	0.0001	0.0006	0.0000	0.0000	0.0001	0.0000	0.0000	0.0008	50	0.0000
48	TIMBER	0.0000	0.0000	0.0000	0.0002	0.0000	0.0003	0.0000	0.0005	50	0.0000
49	TIMBER	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	50	0.0000
50	TIMBER	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	50	0.0000
51	Timber	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
52	TIMBER	0.0001	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
53	TIMBER	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
54	TIMBER	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
55	TIMBER	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
56	TIMBER	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
57	TIMBER	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
		1.9848	2.4858	2.4680	2.2238	1.3851	1.0826	3.5241	15.1541		0.4982

5.2: DIAMETER CLASS WISE ESTIMATED PULP WOOD ANNUAL YEILD

S.No.	Scientific Name	Name of the Class	$\begin{gathered} 10- \\ 20 \mathrm{~cm} \end{gathered}$	$\begin{gathered} 21- \\ 30 \mathrm{~cm} \end{gathered}$	$\begin{gathered} 31- \\ 40 \mathrm{~cm} \end{gathered}$	$\begin{gathered} \text { 41- } \\ 50 \mathrm{~cm} \end{gathered}$	$\begin{gathered} 51- \\ 60 \mathrm{~cm} \end{gathered}$	$\begin{gathered} \text { 61- } \\ 70 \mathrm{~cm} \end{gathered}$	>70cm	SUM	Rotation Age(yrs)	Annual Yeild (m. cum)
1	Eucalyptus camaldulensis	PULP	0.0420	0.0418	0.1111	0.1064	0.0872	0.0568	0.0278	0.4730	7	0.1351
2	Leucaena leucocephala	PULP	0.0091	0.0062	0.0087	0.0102	0.0043	0.0087	0.0034	0.0507	7	0.0145
3	Bombax ceiba	PULP	0.0050	0.0054	0.0067	0.0088	0.0007	0.0000	0.0092	0.0357	40	0.0018
4	Chukrasia tabularis	PULP	0.0002	0.0030	0.0032	0.0000	0.0000	0.0000	0.0000	0.0064	50	0.0003
5	Ailanthus excelsa	PULP	0.0001	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0004	20	0.0000
6	Acacia auriculiformis	PULP	0.0000	0.0000	0.0008	0.0000	0.0000	0.0000	0.0000	0.0008	50	0.0000
	Total		0.0563	0.0566	0.1305	0.1254	0.0922	0.0655	0.0405	0.5670		0.1517

5.3: DIAMETER CLASS WISE ESTIMATED FUELWOOD ANNUAL YEILD

S.No.	Scientific Name	Name of the Class	$\begin{gathered} 10- \\ 20 \mathrm{~cm} \end{gathered}$	$\begin{gathered} 21- \\ 30 \mathrm{~cm} \end{gathered}$	$\begin{gathered} 31- \\ 40 \mathrm{~cm} \end{gathered}$	$\begin{gathered} \text { 41- } \\ 50 \mathrm{~cm} \end{gathered}$	$\begin{gathered} 51- \\ 60 \mathrm{~cm} \end{gathered}$	$\begin{gathered} \text { 61- } \\ 70 \mathrm{~cm} \end{gathered}$	>70cm	SUM	Rotation Age(yrs)	Annual Yeild (m. cum)
1	Butea monosperma	FUEL	0.1044	0.0898	0.0813	0.0899	0.1056	0.0811	0.9213	1.4733	50	0.0589
2	Prosophis juliferra	FUEL	0.0068	0.0109	0.0117	0.0153	0.0038	0.0053	0.0319	0.0858	7	0.0245

120	Acacia ferruginea	FUEL	0.0000	0.0001	0.0002	0.0007	0.0000	0.0000	0.0000	0.0010	50	0.0000
121	Memecylon umbellatum	FUEL	0.0000	0.0000	0.0010	0.0000	0.0000	0.0000	0.0000	0.0010	50	0.0000
122	Drris indica	FUEL	0.0000	0.0003	0.0007	0.0000	0.0000	0.0000	0.0000	0.0010	50	0.0000
123	Cassine glauca	FUEL	0.0001	0.0000	0.0009	0.0000	0.0000	0.0000	0.0000	0.0010	50	0.0000
124	Zyzyphus nummu laria	FUEL	0.0000	0.0000	0.0000	0.0010	0.0000	0.0000	0.0000	0.0010	50	0.0000
125	Bridella retusa	FUEL	0.0001	0.0005	0.0004	0.0000	0.0000	0.0000	0.0000	0.0010	50	0.0000
126	Randia uliginosa	FUEL	0.0001	0.0005	0.0003	0.0000	0.0000	0.0000	0.0000	0.0010	50	0.0000
127	Zizyphus oenoplea	FUEL	0.0004	0.0005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0009	50	0.0000
128	Persea macranth	FUEL	0.0000	0.0002	0.0006	0.0000	0.0000	0.0000	0.0000	0.0009	50	0.0000
129	Acacia farnesiana	FUEL	0.0002	0.0000	0.0000	0.0001	0.0002	0.0004	0.0000	0.0009	50	0.0000
130	Ficus benjamina	FUEL	0.0000	0.0000	0.0000	0.0003	0.0004	0.0000	0.0001	0.0008	50	0.0000
131	Polyalthia serasoides	FUEL	0.0008	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0008	50	0.0000
132	Canthium dicoccum	FUEL	0.0002	0.0000	0.0000	0.0006	0.0000	0.0000	0.0000	0.0008	50	0.0000
133	Avicenia marina	Fuel	0.0000	0.0000	0.0000	0.0008	0.0000	0.0000	0.0000	0.0008	50	0.0000
134	Cochlospermum religiosum	FUEL	0.0005	0.0000	0.0003	0.0000	0.0000	0.0000	0.0000	0.0008	50	0.0000
135	Holorina Antidecentrica	FUEL	0.0006	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0008	50	0.0000
136	Hibisum Pentanifolia	FUEL	0.0000	0.0000	0.0001	0.0006	0.0000	0.0000	0.0000	0.0008	50	0.0000
137	Zanthoxylum rhetsa	FUEL	0.0000	0.0008	0.0000	0.0000	0.0000	0.0000	0.0000	0.0008	50	0.0000
138	Ixora pavetta	FUEL	0.0007	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0007	50	0.0000
139	Diospyros cordifolia	FUEL	0.0007	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0007	50	0.0000
140	Fievus mollis	FUEL	0.0000	0.0001	0.0000	0.0002	0.0000	0.0004	0.0001	0.0007	50	0.0000
141	Parviflorum lamk	FUEL	0.0005	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0007	50	0.0000
142	Euphorbia nivulia	FUEL	0.0003	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0007	50	0.0000
143	Firmiania colorata	FUEL	0.0001	0.0000	0.0006	0.0000	0.0000	0.0000	0.0000	0.0006	50	0.0000
144	Holarrhena pubescens	FUEL	0.0006	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0006	50	0.0000
145	Camellia thea	FUEL	0.0000	0.0006	0.0000	0.0000	0.0000	0.0000	0.0000	0.0006	50	0.0000
146	Limonia alata	FUEL	0.0006	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0006	50	0.0000
147	Bauhinia purpurea	FUEL	0.0004	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0006	50	0.0000
148	Ixora arborea	FUEL	0.0000	0.0004	0.0002	0.0000	0.0000	0.0000	0.0000	0.0006	50	0.0000
149	Feronia limonia	FUEL	0.0000	0.0000	0.0003	0.0001	0.0000	0.0000	0.0000	0.0005	50	0.0000
150	Erythrina suberosa	FUEL	0.0000	0.0005	0.0000	0.0000	0.0000	0.0000	0.0000	0.0005	50	0.0000
151	Croton Oblogifolium	FUEL	0.0002	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0005	50	0.0000
152	Dioscorea tomen	FUEL	0.0002	0.0002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0005	50	0.0000
153	Desmodium hetrcarpus	FUEL	0.0000	0.0000	0.0004	0.0001	0.0000	0.0000	0.0000	0.0005	50	0.0000
154	Dhumpiti	FUEL	0.0000	0.0000	0.0005	0.0000	0.0000	0.0000	0.0000	0.0005	50	0.0000
155	Sorghum halpense	FUEL	0.0001	0.0003	0.0000	0.0000	0.0000	0.0000	0.0000	0.0005	50	0.0000
156	Sapindus emargi	FUEL	0.0000	0.0002	0.0000	0.0000	0.0002	0.0000	0.0000	0.0005	50	0.0000
157	Sulvadora persica	FUEL	0.0000	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0004	50	0.0000
158	Bridelia hamiltoniana	FUEL	0.0000	0.0004	0.0000	0.0000	0.0000	0.0000	0.0000	0.0004	50	0.0000

198	Ximenia americana	FUEL	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
199	Oxalis corniculata	FUEL	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
200	Pleiospermum alatum	FUEL	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
201	Dillenia pentagyna	FUEL	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0002	100	0.0000
202	Jatropha glandulifera	FUEL	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
203	Cordia macleodii	FUEL	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
204	Gardinia turgida	FUEL	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
205	Coghlopermum pelaipim	FUEL	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
206	Cipadessa baccifera	FUEL	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
207	Canthium parviflorum	FUEL	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0001	100	0.0000
208	Citrus aurantifolia	FUEL	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
209	Diospyros ebenum	FUEL	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
210	Hydnocarpus alpina	FUEL	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
211	Ficus microcarpa / F. ret	FUEL	0.0000	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
212	Miliusa Velutina	FUEL	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
213	Sundam	FUEL	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
214	Gardenia fragrans	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
215	Jatropa gasifolium	FUEL	0.0001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
216	Scutia myrtina	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	50	0.0000
217	Isonandra candollean	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
218	Grewia obutisifolia	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
219	Erythorxylon monogynum	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
220	Saccopetalum tomentosa	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
221	Acacia sinuata	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
222	Phaseolus aereus	fUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
223	Ichnocarpus frutescens	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
224	Actinodaphene madera	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
225	Cochlo sperhun	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
226	Tylophera athematica	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
227	Dolichandrone crispa	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
228	Bischofia javanica	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
229	Ventilago denticulata	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
230	Vitex sp	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
231	Casia astoria	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
232	Terenna astatica	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
233	Agnosma dicotama	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
234	Derris indica	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
235	Acalypha ciliata	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
236	Murraya koenigii	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000

237	Antidesma menasu	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
238	Euphorvia tortilia	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
239	Hedychium coronarium	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
240	Plectranthus fruticasu	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
241	Sesbania grandiflora	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
242	Calycopteris floribunda	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
243	Mimusops elengi	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
244	Vitex leucoxylon	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
245	Anthocephalus kadamba	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
246	Artocarpus hirsutus	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
247	Gymnemasylvested	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
248	Atlantia monophylla	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
249	Polyalthia longifolia	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
250	Kigelia african	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
251	Broussonetia papyrifera	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
252	Casearia elliptica	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
253	Prosopis cinera	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
254	Cappris divicata	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
255	Litsea decanensis	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
256	Miscellaneous Species	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
257	Tamarix dioca	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
258	Grewia hirusta	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
259	Blastania garcinii	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
260	Buchanania axillaris	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
261	Diospyros peregrina	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
262	Dodonaea viscosa	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
263	Aglaia elaeagnoides	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
264	Monigga oleifera	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
265	Merremia emerginata	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
266	Borreria stricta	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
267	psidium guajava	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
268	Grewia aspira	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
269	Bauhinia variegata	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
270	Hibiscus rosa-sinen	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
271	Sinduga	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
272	Tragia involucerata	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
273	Grevillea robusta	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
274	Reeta	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
275	Bauhinia malabarica	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000

276	Grewia damina	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
277	Macaranga peltata	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
278	Manisurus mtyusus	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
279	Combretum ovalifolium	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
280	Hemidesmus indicus	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
281	Commelina benghalensis	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
282	Fluggea leucopyrus	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
283	Elettaria cardamomum	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
284	Tabernaemontana divaricat	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
285	Caesalpinia pulcherrim	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
286	Spondias pinnata	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
287	Annona reticulata	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
288	Pavetta candolleana	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
289	Aristolochia grandiflora	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
290	Cascuta	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
291	Punica Granatum	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
292	Manikara Zapota	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
293	Rahadalla	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
294	Cronton bonplandianus	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
295	Citrus limon	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
296	Linociera ramiflora	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
297	Cassia glance	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
298	Ricinus communis	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
299	Desmodium gangeticum	FUEL	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	50	0.0000
	Total	FUEL	0.4768	0.6134	0.8210	0.8844	0.6493	0.4053	1.8733	5.7235		0.2198

[^0]: ii. Plantations:

